Vibrational Analysis of all-trans-Retinal

Bo Curry, Albert Broek, ${ }^{1}$ Johan Lugtenburg, ${ }^{1}$ and Richard Mathies*
Contribution from the Department of Chemistry, University of California, Berkeley, California 94720. Received January 11, 1982

Abstract

We have obtained Raman and IR spectra of all-trans-retinal and its 10-, 11-, 12-, and 15-monodeuterio, 11,12and 10,11-dideuterio, and 19-trideuterio derivatives, as well as the 9 - and 13-demethyl compounds. From these data, empirical assignments for most of the observed vibrations between 600 and $1700 \mathrm{~cm}^{-1}$ have been made. A modified Urey-Bradley force field, transferred from model polyenes and polyenals, has been refined to satisfactorily reproduce the frequencies and deuterium shifts observed in these spectra. From this analysis we have formulated a set of simple rules which describe the coupling between out-of-plane wagging vibrations of trans vinyl hydrogens and deuterons. In addition, the distribution of Raman intensity in the $1100-1400-\mathrm{cm}^{-1}$ fingerprint region of the retinal spectrum is shown to result from vibrational mixing of the C_{9} and C_{13} methyl stretches with the $\mathrm{C}-\mathrm{C}$ stretches and CCH bends of the conjugated chain. The assignment of the observed spectral lines of retinal to specific vibrations and the formulation of a reliable force field provide a basis for predicting the effects of structural and environmental perturbations on the Raman spectrum of the retinylidene chromophore. Thus, we are now able to discuss the expected changes caused by Schiff base formation and by protonation of the Schiff base.

Introduction

The geometric isomers of retinal have considerable biological importance as chromophores in visual receptors and in bacteriorhodopsin, the light-driven proton pump of Halobacterium halobium. ${ }^{2}$ Resonance Raman (RR) ${ }^{3,4}$ spectra of these pigments have been used to determine the isomeric form of the chromophore ${ }^{5}$ and the state of protonation of the Schiff base linkage between the chromophore and the protein. ${ }^{6}$ However, much more information about chromophore structure and protein environment could be obtained from these RR spectra if all the observed lines could be assigned to specific vibrational modes. Previous workers have used RR spectra of chemically and isotopically modified pigment analogues and of model compounds to suggest preliminary vibrational assignments. ${ }^{7-10}$ In our laboratory, spectra of visual pigments regenerated with deuterated retinals have been used to assign the prominent hydrogen out-of-plane (HOOP) vibrations of rhodopsin and its primary photoproduct, bathorhodopsin. ${ }^{11-13}$
(1) Department of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.
(2) For general reviews see: (a) Birge, R. R. Annu. Rev. Biophys. Bioeng. 1981, 10, 315. (b) Ottolenghi, M. Adv. Photochem. 1980, 12, 97. (c) Stoeckenius, W.; Lozier, R. H.; Bogomolni, R, A. Biochim. Biophys. Acta 1979, 505, 215. (d) Honig, B. Annu. Rev. Phys. Chem. 1978, 29, 31. (e) Henderson, R. Annu. Rev. Biophys. Bioeng. 1977, 6, 87.
(3) Abbreviations used: RR, resonance Raman; PRR, preresonance Raman; HOOP, hydrogen out-of-plane; PSB, protonated Schiff base.
(4) For resonance Raman reviews see: (a) Mathies, R. Chem. Biochem. Appl. Lasers 1979, 4, 55. (b) Warshel, A. Annu. Rev. Biophys. Bioeng. 1977, 6, 273. (c) Callender, R.; Honig, B. Ibid. 1977, 6, 33.
(5) (a) Mathies, R.; Freedman, T. B.; Stryer, L. J. Mol. Biol. 1977, 109, 367. (b) Doukas, A. G.; Aton, B.; Callender, R. H.; Ebrey, T. G. Biochemistry 1978, 17, 2430. (c) Braiman, M.; Mathies, R. Ibid. 1980, 19, 5421.
(6) (a) Oseroff, A. R.; Callender, R. H. Biochemistry 1974, 13, 4243. (b) Lewis, A.; Spoonhower, J.; Bogomolni, R. A.; Lozier, R. H.; Stoeckenius, W. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 4462. (c) Terner, J.; Hsieh, C.-L.; Burns, A. R.; El-Sayed, M. A. Biochemistry 1979, 18, 3629. (d) Terner, J.; Hsieh, C.-L.; Burns, A. R.; El-Sayed, M. A. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 3046. (e) Ehrenberg, B.; Lemley, A. T.; Lewis, A.; v. Zastrow, M.; Crespi, H. L. Biochim. Biophys. Acta 1980, 593, 441. (f) Argade, P. V.; Rothschild, K. J.; Kawamoto, A. H.; Herzfeld, J.; Herlihy, W. C. Proc. Natl. Acad. Sct. U.S.A. 1981, 78, 1643.
(7) (a) Marcus, M. A.; Lewis, A.; Racker, E.; Crespi, H. Biochem. Biophys. Res. Commun. 1977, 78, 669. (b) Marcus, M. A.; Lewis, A. Biochemistry 1978, 17, 4722.
(8) (a) Cookingham, R.; Lewis, A. J. Mol. Biol. 1978, 119, 569. (b) Cookingham, R. E.; Lewis, A.; Lemley, A. T. Biochemistry 1978, 17, 4699. (c) Marcus, M. A.; Lemley, A. T.; Lewis, A. J. Raman Spectrosc. 1979, 8, 22.
(9) Stockburger, M.; Klusmann, W.; Gattermann, H.; Massig, G.; Peters, R. Biochemistry 1979, 18, 4886.
(10) Aton, B.; Doukas, A. G.; Narva, D.; Callender, R. H.; Dinur, U.; Honig, B. Biophys. J. 1980, 29, 79.
(11) Eyring, G.; Curry, B.; Mathies, R.; Fransen, R.; Palings, I.; Lugtenburg, J. Biochemistry 1980, 19, 2410.
(12) Eyring, G.; Curry, B.; Mathies, R.; Broek, A.; Lugtenburg, J. J. Am. Chem. Soc. 1980, 102, 5390.

The further interpretation of these pigment spectra requires a more complete assignment of the observed lines, and the determination of the normal modes of vibration responsible for these lines. Such an assignment would be greatly facilitated if a vibrational analysis of the all-trans-retinal chromophore were available.

Early assignments of the preresonance Raman (PRR) spectrum of all-trans-retinal (I) were made by Rimai et al. ${ }^{14}$ They pointed

I
out that vibrations of the β-ionyl ring, because of their weak coupling with the conjugated π system, are unlikely to be observed in the PRR spectrum. They then classified the observed Raman lines as either "lattice modes" of the vinyl carbon skeleton or "group modes" associated with $\mathrm{C}=\mathrm{O}, \mathrm{CH}_{3}$, or vinyl hydrogen motion. Lattice modes included the $\sim 1575-\mathrm{cm}^{-1} \mathrm{C}=\mathrm{C}$ stretch, and the observed vibrations in the $1100-1400-\mathrm{cm}^{-1}$ "fingerprint" region, which they attributed to $\mathrm{C}-\mathrm{C}$ stretching vibrations. CCH in-plane bends were noted to also occur in the $1100-1400-\mathrm{cm}^{-1}$ range, but were not identified. Group vibrations were assigned to Raman lines at $1662(\mathrm{C}=\mathrm{O}$ stretch $), 1446\left(\mathrm{CH}_{3}\right.$ deformation), $1008\left(\mathrm{C}-\mathrm{CH}_{3}\right.$ stretch), and $964-\mathrm{cm}^{-1}$ (vinyl hydrogen out-ofplane wags). More recently, Cookingham et al. confirmed and extended these assignments with PRR spectra of demethyl, bu-tyl-substituted, and ionone ring-modified retinals, as well as IR spectra of the unmodified retinals. ${ }^{8 b, 15}$
In the present work we have obtained PRR and IR spectra of all-trans-retinal and its $10-, 11$-, 12-, and 15 -monodeuterio, 11,12and 10,11-dideuterio, 19-trideuterio, and 9- and 13-demethyl derivatives. We also present the results of a normal coordinate calculation which reproduces the observed frequency shifts of the major lines. The assignment of the out-of-plane hydrogen wags in the spectra of our retinal derivatives allows us to formulate general rules for the characteristic group frequencies of protonated and deuterated wags. With the help of our calculations we can also explain the major effects of the chain methyl groups on the

[^0]Table I. Modified Urey-Bradley Force Field ${ }^{a}$

	coordinate	$\begin{aligned} & \text { initial } \\ & \text { field }^{b} \end{aligned}$	refined field		coordinate	$\begin{aligned} & \text { initial } \\ & \text { field }^{b} \end{aligned}$	refined field
chain stretches	$K(5=6)$	5.7	6.79	non-Urey-Bradley	$h(\mathrm{CCH})(\mathrm{CCH})$	0.06	0.08
	$K(7=8)$	5.7	6.20		$h(\mathrm{C}=\mathrm{CH})\left(\mathrm{CC}-\mathrm{CH}_{3}\right)$	0.0	0.10
	$K(9=10)$	5.7	6.24		$h(\mathrm{C}-\mathrm{CH})\left(\mathrm{CC}-\mathrm{CH}_{3}\right)$	0.0	0.14
	$K(11=12)$	5.7	6.44		$h(\mathrm{CCC})(\mathrm{CCC})$	0.172	-0.14
	$K(13=14)$	5.7	6.34		$h(\mathrm{CCC})(\mathrm{CCH})$	0.0	0.04
	$K(6-7)$	3.9	3.94	CH_{3} group	$K(\mathrm{CH})$	4.741	4.741
	$K(8-9)$	3.9	4.30		$H(\mathrm{CCH})$	0.468	0.54
	$K(10-11)$	3.9	4.28		$H(\mathrm{HCH})$	0.50	0.464
	$K(12-13)$	3.9	4.09		$F(\mathrm{CCH})$	0.42	0.42
	$K(14-15)$	3.4	3.41		$F(\mathrm{HCH})$	0.11	0.11
	$K(\mathrm{C}-\mathrm{H})$	4.73	4.73		$h(\mathrm{HCH})(\mathrm{HCH})$	-0.034	-0.078
	$\mathrm{K}\left(9 . \mathrm{CH}_{3}\right)$	3.10	3.07	out-of-plane	w(7H)	0.475	0.466
	$\mathrm{K}\left(13-\mathrm{CH}_{3}\right)$	3.10	2.74		w(8H)	0.475	0.466
	$K(\mathrm{C}=\mathrm{O})$	9.78	9.83		w(10H)	0.475	0.474
chain bends	$H(\mathrm{CCC})$	0.65	0.649		w(11H)	0.475	0.465
	$H(\mathrm{C}=\mathrm{CH})$	0.326	0.316		w(12H)	0.475	0.466
	$H(\mathrm{C}-\mathrm{CH})$	0.305	0.321		$\mathrm{w}(14 \mathrm{H})$	0.475	0.462
	$H(\mathrm{CCO})$	0.918	0.918		w(15H)	0.453	0.439
	$\mathrm{H}\left(\mathrm{CC}-\mathrm{CH}_{3}\right)$	0.65	0.65		$\mathrm{w}\left(\mathrm{CH}_{3}\right)$	0.411	0.466
	$H(\mathrm{OCH})$	0.512	0.265		$t(\mathrm{C}-\mathrm{C})$	0.19	0.19
Urey-Bradley	$F(\mathrm{C}=\mathrm{CH})$	0.52	0.52		$\mathrm{t}(\mathrm{C}=\mathrm{C})$	0.54	0.55
	$F(\mathrm{C}-\mathrm{CH})$	0.49	0.49		$\mathrm{t}\left(\mathrm{C}-\mathrm{CH}_{3}\right)^{\text {c }}$	0.137	0.137
	$\mathrm{F}\left(\mathrm{CC}-\mathrm{CH}_{3}\right)$	0.49	0.49		$(6 \mathrm{R}, 7 \mathrm{H})_{\mathrm{s}}$	-0.06	-0.06
	$F(\mathrm{CCO})$	0.46	0.46		$\left(8 \mathrm{H}, 9 \mathrm{CH}_{3}\right)_{\text {s }}$	0.074	0.069
	$F(\mathrm{OCH})$	0.61	1.01		$(10 \mathrm{H}, 11 \mathrm{H})_{\mathrm{S}}$	0.074	0.064
	$F(\mathrm{CCC})$	0.35	0.35		$\left(12 \mathrm{H}, 13 \mathrm{CH}_{3}\right)_{\mathrm{s}}$	0.074	0.061
non-Urey-Bradley	$k(\mathrm{C}=\mathrm{C})(\mathrm{C}=\mathrm{O})$	-0.661	-0.661		$(14 \mathrm{H}, 15 \mathrm{H})_{\mathrm{s}}$	0.074	0.055
	$k(\mathrm{C}-\mathrm{C})(\mathrm{C}=\mathrm{O})$	0.30	0.43		$(5 \mathrm{R}, 6 \mathrm{R})_{\mathrm{d}}$	0.181	0.173
	$k(\mathrm{C}=\mathrm{C})(\mathrm{C}=\mathrm{C})$	-0.472	-0.35		$(7 \mathrm{H}, 8 \mathrm{H}) \mathrm{d}$	0.181	0.182
	$k(5=6)(7=8)$	-0.472	-0.09		${ }^{\left(9 \mathrm{CH}_{3}, 10 \mathrm{H}\right)} \mathrm{d}$	0.181	0.173
	$k(\mathrm{C}=\mathrm{C})(6-7)$	0.30	0.05		$(11 \mathrm{H}, 12 \mathrm{H}) \mathrm{d}$	0.181	0.166
	$k(\mathrm{C}=\mathrm{C})(\mathrm{C}-\mathrm{C})$	0.30	0.43		$\left(13 \mathrm{CH}_{3}, 14 \mathrm{H}\right)_{\mathrm{d}}$	0.181	0.182
	$k(\mathrm{C}-\mathrm{C})(\mathrm{C}-\mathrm{C})$	-0.09	-0.10		$(t, w)_{d}$	-0.278	-0.280
	$k(\mathrm{CC})\left(\mathrm{C}-\mathrm{CH}_{3}\right)$	0.8	0.5		$\begin{aligned} & (\mathrm{t}, \mathrm{w})_{\mathrm{s}} \\ & \left(\mathrm{t}\left(\mathrm{C}-\mathrm{CH}_{3}\right), \mathrm{HCH}\right)^{c} \end{aligned}$	$\begin{aligned} & -0.132 \\ & -0.02 \end{aligned}$	$\begin{aligned} & -0.118 \\ & -0.0318 \end{aligned}$

${ }^{a}$ Stretching force constants (K, F, k) in mdyn/ \AA, bending constants in mdyn $\mathcal{\AA} / \mathrm{rad}^{2}$. Symbols used: K, diagonal stretch; H, diagonal bend; F, Urey-Bradley quadratic constant (linear term was set equal to -0.1F); k, stretch-stretch interaction; h, bend-bend interaction (two common a toms); w, diagonal wag; t, chain torsion; $(w, w)_{s}$, wag-wag interaction across single bond; $(w, w)_{d}$, wag-wag interaction across double bond. ${ }^{b}$ Details of the fit to model compounds are given in ref 23 . ${ }^{c}$ The bend-torsion interaction term was required because we defined $\mathrm{t}\left(\mathrm{C}-\mathrm{CH}_{3}\right)$ as a CCCH torsion rather than as a rigid rotation of the methyl group.
intensity pattern in the $1100-1400-\mathrm{cm}^{-1}$ fingerprint region. A coherent picture emerges from this analysis which should be useful for understanding the spectra of the other retinal isomers, Schiff bases, and the retinal-containing pigments.

Experimental Section

All-trans deuterated retinal derivatives were synthesized using published methods ${ }^{12.16}$ and were $>95 \%$ isotopically and isomerically pure as shown by mass spectrometry, NMR, and high-performance liquid chromatography. The 15 -deuterio retinal was prepared by reduction of all-trans-retinoic acid (Sigma) with LiAlD_{4}, followed by reoxidation to the aldehyde with MnO_{2}. The 9 - and 13 -demethylretinals were prepared by reduction of demethylretinoic acids with LiAlH_{4} and reoxidation with MnO_{2}. Crystalline all-trans-retinal was purchased from Eastman and used without further purification.

Preresonance Raman spectra of the aldehydes were obtained in CCl_{4} solution using $20-30-\mathrm{mW} 676.4-\mathrm{nm}$ excitation from a Spectra-Physics Model 171 krypton ion laser. Each spectrum is an average of three to five scans of stationary samples. No evidence of isomerization or sample degradation was observed in successive scans. The CCl_{4} solvent peaks at 762 and $790 \mathrm{~cm}^{-1}$ were digitally subtracted, producing in some cases slight anomalies in this region. All labeled peaks in the spectra were clearly discernible before solvent subtraction. Spectral resolution is 4 cm^{-1} and peak positions are accurate to $\pm 2 \mathrm{~cm}^{-1}$.

IR spectra were obtained on thin films produced by dropwise evaporation of a pentane solution on a KBr window. Each spectrum is a single integration of 200 scans at $2-\mathrm{cm}^{-1}$ resolution, taken on a Nicolet II FTIR spectrometer, and ratioed against a clean window. The absorbance

[^1]spectra were manually digitized for final plotting with a Tektronix 4662 plotter. All peaks and shoulders in the digitized data were present in the original spectra, although the digitization process introduced minor distortions of line shapes. Reported peak positions are those of the original data, and are accurate to $\pm 1 \mathrm{~cm}^{-1}$.

Computational Methods. Normal mode calculations were performed using the Wilson FG method. ${ }^{17}$ Force constants of a modified UreyBradley force field were chosen to best reproduce published vibrational assignments of butadiene, ${ }^{18}$ acrolein, ${ }^{19}$ hexatriene,,${ }^{20}$ isoprene, ${ }^{21}$ butene, ${ }^{22}$ crotonaldehyde, ${ }^{23}$ and their deuterated derivatives (Table I). The force constants used for in-plane polyene chain vibrations were slightly modified from those proposed by Inagaki et al. ${ }^{24}$ Initial force constants for CH_{3} group coordinates and for out-of-plane chain torsions and wags were taken from Levin et al. ${ }^{22}$ and adapted for consistency with our UreyBradley field.
The calculations on all-trans-retinal were carried out on a model molecule in which $\mathrm{C}_{1}, \mathrm{C}_{4}$, and C_{18} were replaced by dummy " R " atoms, which have a mass of 15 and the potential parameters of saturated

[^2]carbon. The masses of hydrogen and deuterium were taken as the "spectroscopic" masses ($m_{\mathrm{H}}=1.088, m_{\mathrm{D}}=2.126$) in order to simulate the effects of anharmonicity. The geometry of the model was taken as the equilibrium geometry calculated by Warshel's QCFF- π program ${ }^{25}$ for the complete retinal molecule (see supplemental Table VIII), which for these purposes is not significantly different from the reported crystal geometry. ${ }^{26}$ Methyl group orientation was chosen to be symmetrical with respect to reflection in the local plane of the conjugated chain. Test calculations were performed using QCFF- π in order to estimate the effects of omission of the β-ionyl ring. Calculated frequencies and normal modes for chain vibrations between C_{7} and the aldehyde group were not significantly different for the model with the ring omitted. Also, because the retinal chain is nearly planar, the chain vibrations can be subdivided into motions primarily in the plane and those primarily out of the plane. This separation introduced errors of no more than $1 \mathrm{~cm}^{-1}$ in any frequency, with considerable savings of computation time.

The FG program was modified to generate its own standard basis set using the Fortran subroutine CHEMCO adapted from QCFF- $\pi{ }^{27}$ The chosen basis set includes all stretches and valence bends, and a nonredundant out-of-plane basis set consisting of one trans CCCC torsion for each chain bond, one trans CCCH torsion for each CH_{3} group, and one Wilson-type out-of-plane wag ${ }^{17}$ centered on each sp^{2} carbon.

The initial force constants of Table I were refined to achieve the best least-squares fit to the observed Raman and IR frequencies of retinal and its deuterio derivatives. The usual refinement algorithms ${ }^{28}$ first associate each experimental frequency ν_{e} with the nearest calculated frequency ν_{c}, and then minimize the sum of the squared residuals by adjusting the force constants. For a molecule the size of retinal, the density of normal modes is so high that the nearest frequency calculated with the unrefined force field is often not an appropriate assignment of the observed line. It is therefore necessary to incorporate empirical information about the character of the normal modes into the refinement algorithm. ${ }^{29}$ We first assigned prominent $\mathrm{C}=\mathrm{C}, \mathrm{C}-\mathrm{C}, \mathrm{CH}_{3}, \mathrm{CCH}$ bending, and HOOP vibrations based on observed frequency and intensity shifts in the Raman and IR spectra of the deuterio and demethyl derivatives. We then forced convergence to the chosen assignment by associating each ν_{e} with the calculated ν_{c} for which $\left|\left(\nu_{c}{ }^{2}-\nu_{c}{ }^{2}\right) / a_{c} \cdot \mathbf{a}_{c}\right|$ was smallest. When no "empirical" normal mode vector a_{e} could be deduced from the data, it was set equal to the calculated vector \mathbf{a}_{c}. The squared residuals were then minimized in the usual way. The final force constants of Table I were obtained by adjusting 30 in-plane parameters to fit 116 experimental frequencies (rms error $<5 \mathrm{~cm}^{-1}$), and 14 out-of-plane parameters to fit 34 frequencies (rms error $<3 \mathrm{~cm}^{-1}$). A more detailed description of the final force field can be found in supplemental Table IX.

Results and Discussion

The 141 fundamental frequencies of retinal can be separated into groups which are a pproximately vibrationally independent. Because the polyene chain is nearly planar, we will separately discuss the out-of-plane and the in-plane vibrations of the chain. The group vibrations of the chain methyl groups, although they are not all vibrationally isolated, are also conveniently discussed together. Finally, we have cataloged some of the vibrations attributable to the β-ionyl ring.

Out-of-Plane Chain Vibrations

The out-of-plane vibrations of the retinal chain can be classified as CCCC torsions or as wags of substituent hydrogens and methyl groups. The CCCC torsional modes and the out-of-plane wags of methyl carbons appear below $500 \mathrm{~cm}^{-1}$, in a region of the spectrum masked by KBr absorption in the IR and by intense CCl_{4} scattering in the Raman spectra. These modes were therefore not observed and will not be further discussed.

Hydrogen out-of-plane (HOOP) vibrations of linear polyenes, as we have previously discussed, ${ }^{11}$ are observed between 750 and $1050 \mathrm{~cm}^{-1}$, and they shift to $600-800 \mathrm{~cm}^{-1}$ when vinyl hydrogens are deuterated. This region of the PRR and IR spectra of all-trans-retinal and five vinyl-deuterated derivatives is presented in Figure 1. The most striking feature in this region of the retinal IR spectrum (Figure 1A) is the intense line at $966 \mathrm{~cm}^{-1}$, which

[^3]Table II. Calculated HOOP Frequencies and Assignments for Retinal

	obsd	calcd	description ${ }^{\text {a }}$
unmodified		990	1.13(15w) -0.49(14w)
	966	966	$\begin{aligned} & 0.48(7 w)+0.59(8 w)+0.35(11 w)+ \\ & 0.41(12 w) \end{aligned}$
	959	960	$\begin{aligned} & 0.51(11 w)+0.52(12 w)-0.44(7 w)- \\ & 0.43(8 w) \end{aligned}$
	887	892	0.99(10w) - 0.66(11w)
	876	871	$\begin{aligned} & 0.84(14 w)+0.47(12 w)-0.33(11 w)- \\ & 0.33(10 w) \end{aligned}$
		833	$\begin{aligned} & 0.74(12 w)-0.58(11 w)-0.56(14 w)+ \\ & 0.33(7 w)-0.30(8 w) \end{aligned}$
		815	$0.84(7 w)-0.80(8 w)+0.33(10 w)$
$10 \cdot \mathrm{D}$	962	963	$0.66(7 w)+0.72(8 w)$
	956	955	$0.70(11 w)+0.68(12 w)$
	878	876	$0.76(14 w)-0.63(11 w)+0.58(12 w)$
		841	$\begin{aligned} & 0.59(11 w)-0.63(12 w)+0.67(14 w)- \\ & 0.32(10 w) \end{aligned}$
		825	$0.90(7 \mathrm{w})-0.84(8 \mathrm{w})$
	710	708	$0.89(10 w)-0.27(12 w)-0.22\left(9 \mathrm{CH}_{3} w\right)$
$11-\mathrm{D}$	964	964	$0.65(7 w)+0.73(8 w)$
	917	920	$0.85(12 \mathrm{w})+0.72(10 \mathrm{w})$
	880	877	$0.78(10 w)-0.52(12 w)-0.51(14 w)$
		851	0.87(14w) -0.46(12w)
		816	0.89(7w)-0.84(8w) $+0.33(10 w)$
	740	741	$0.92(11 w)-0.34(12 w)$
12-D	964	964	$0.65(7 w)+0.73(8 w)$
	906	911	$0.84(11 w)+0.51(10 w)$
	887	892	0.96(10w) - 0.71(11w)
	862	863	$1.00(14 w)+0.23(15 w)$
		818	$0.91(7 w)-0.86(8 w)+0.27(10 w)$
	722	726	$0.94(12 \mathrm{w})-0.24\left(13 \mathrm{CH}_{3} \mathrm{w}\right)$
11,12-D ${ }_{2}$	964	964	
	890	896	$1.09(10 w)-0.30(7 w)-0.20\left(9 \mathrm{CH}_{3} w\right)$
	864	864	$1.01(14 w)+0.23(15 w)$
		818	$0.91(7 w)-0.86(8 w)+0.26(10 w)$
	742	744	$\begin{aligned} & 0.83(11 w)-0.62(12 w)+ \\ & 0.20\left(13 \mathrm{CH}_{3} w\right) \end{aligned}$
	708	712	$\begin{aligned} & 0.71(12 w)+0.39(11 w)- \\ & 0.15\left(13 \mathrm{CH}_{3} w\right) \end{aligned}$
10,11-D ${ }_{2}$	963	963	$0.66(7 w)+0.72(8 w)$
	908	905	$1.04(12 w)+0.36(14 w)$
		854	$0.96(14 w)-0.35(12 w)$
		827	$0.93(7 w)-0.87(8 w)+0.21\left(9 \mathrm{CH}_{3} w\right)$
	762	759	0.85(11w) -0.62(10w)
	692	690	$\begin{aligned} & 0.69(10 w)+0.38(11 w)-0.31(12 w)- \\ & 0.18\left(9 \mathrm{CH}_{3} w\right) \end{aligned}$
$15 \cdot \mathrm{D}$	967	966	$\begin{aligned} & 0.46(7 w)+0.56(8 w)+0.37(11 w)+ \\ & 0.45(12 w)+0.30(10 w) \end{aligned}$
	959	961	$\begin{aligned} & 0.48(11 w)+0.51(12 w)-0.46(7 w)- \\ & 0.46(8 w) \end{aligned}$
	899	903	$\begin{aligned} & 1.00(14 w)-0.57(15 w)-0.38(11 w)+ \\ & 0.22(12 w) \end{aligned}$
		891	$1.02(10 w)-0.55(11 w)$
		843	$0.85(12 w)-0.65(11 w)$
		816	$0.87(7 w)-0.83(8 w)+0.32(10 w)$
	801	798	$0.69(15 w)+0.48(14 w)$

${ }^{a}$ Coefficients ($\partial S / \partial Q$) of hydrogen and CH_{3} group out-of-plane wags (w) in the normal modes Q of all-trans-retinal. A positive wag coefficient represents hydrogen motion in the $+z$ direction. Those internal coordinates S contributing $>10 \%$ to the potential energy are listed.
corresponds to a moderately intense, partially resolved, doublet in the Raman spectrum. This is a well-known IR group frequency associated with the in-phase (${ }^{\mathrm{A}} \mathrm{A}_{\mathrm{u}}$ " in the local $C_{2 h}$ point group) HOOP vibration of trans ethylenic protons. ${ }^{30}$ There are two such groups in retinal: $\mathrm{HC}_{7}=\mathrm{C}_{8} \mathrm{H}$ and $\mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H}$. Upon deuteration at C_{11} or C_{12}, the $\mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H}$ component of the unresolved IR doublet should be removed. Our calculations (Table II) predict

[^4]

Figure 1. Raman and IR spectra of the $550-1050-\mathrm{cm}^{-1}$ region of all-trans-retinal (A) and its 10 -monodeuterio (B), 11-monodeuterio (C), 12-monodeuterio (D), 11,12-dideuterio (E), and 10,11-dideuterio (F) derivatives. The IR absorbance spectra are inverted to facilitate comparison.
that two new lines should appear: the deuterated wag in the $700-750-\mathrm{cm}^{-1}$ range and the residual uncoupled H wag near 910 cm^{-1}. An unresolved lower frequency shoulder of the $966-\mathrm{cm}^{-1}$ IR line, clearly apparent near $957 \mathrm{~cm}^{-1}$ in the original spectra, disappears in the 11-D and 12-D spectra (Figure 1C,D), and two new lines of moderate IR intensity appear at 740 and $917 \mathrm{~cm}^{-1}$ ([11-D]retinal) or at 722 and $906 \mathrm{~cm}^{-1}$ ([12-D]retinal), corresponding to weak Raman lines. When both C_{11} and C_{12} are deuterated (Figure 1E), the $\sim 910-\mathrm{cm}^{-1}$ line vanishes, and two deuterated modes appear at 708 and $742 \mathrm{~cm}^{-1}$. The $959-\mathrm{cm}^{-1}$ Raman line of unmodified retinal can thus be assigned to the $\mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H} \mathrm{A}_{4}$ mode; the $920-\mathrm{cm}^{-1}$ Raman line in [11-D]retinal and the $908-\mathrm{cm}^{-1}$ line in [12-D]retinal are due to the $12-\mathrm{H}$ and 11-H wags, respectively; and the weak Raman lines at 742 ([11-D]retinal) and $720 \mathrm{~cm}^{-1}$ ([12-D]retinal) are assigned to the 11-D and 12-D wags, respectively. The residual IR intensity at $964 \mathrm{~cm}^{-1}$ in the $11,12-\mathrm{D}_{2}$ spectrum is assigned to the other A_{u} HOOP arising from the $\mathrm{HC}_{7}=\mathrm{C}_{8} \mathrm{H}$ moiety.

Several points should be noted about these vibrations. First, the A_{u} modes of trans $\mathrm{HRC}=\mathrm{CRH}$ groups, which are characteristic in IR spectra, usually appear weakly or not at all in PRR spectra, because only totally symmetric vibrations can be A-term enhanced. ${ }^{31}$ A relative distortion of the planar geometry in either the ground or the resonant excited state, however, can cause these modes to appear strongly in the RR spectrum, as is observed in the spectra of the primary photoproducts of visual pigments ${ }^{11}$ and bacteriorhodopsin. ${ }^{32}$ The fact that the $959-\mathrm{cm}^{-1}$ line in retinal also appears with moderate PRR intensity indicates that distortions along this coordinate occur upon excitation to its resonant excited electronic state. ${ }^{33}$ Second, these assignments provide a good

[^5]illustration of the complementary uses of Raman and IR spectra for vibrational assignments. The disappearance of the $959-\mathrm{cm}^{-1}$ shoulder is obscured in the Raman spectra of [11-D]-, [12-D]-, and $\left[11,12-\mathrm{D}_{2}\right]$ retinal by the intense $\mathrm{CC}_{11} \mathrm{D}\left(966 \mathrm{~cm}^{-1}\right)$ and $\mathrm{CC}_{12} \mathrm{D}$ ($972 \mathrm{~cm}^{-1}$) in-plane rocks which shift down from the $1100-$ $1400-\mathrm{cm}^{-1}$ region in these derivatives. The pattern of shifts of the HOOP modes can be clearly discerned in the IR spectra, however, because the A $_{u}$ HOOP modes are much more intense than are the in-plane rocks. Third, the two lines due to the $\mathrm{C}_{11} \mathrm{H}$ and $\mathrm{C}_{12} \mathrm{H}$ wags in the 11-D, 12-D, and $11,12-\mathrm{D}_{2}$ derivatives originate with two HOOP vibrations in the unmodified retinal: the $959-\mathrm{cm}^{-1}$ " A_{u} " HOOP and an out-of-phase " B_{g} " HOOP at lower frequency. ${ }^{11}$ This B_{g} vibration is expected to be weak in both IR and Raman spectra, and unlike the $\mathrm{A}_{\mathbf{u}}$ HOOP it has a variable group frequency in the $750-850-\mathrm{cm}^{-1}$ range. ${ }^{34}$ For example, it appears weakly at $750 \mathrm{~cm}^{-1}$ in the Raman spectrum of trans-butene. ${ }^{22}$ We calculate the $\mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H} \mathrm{B}_{\mathrm{g}}$ HOOP of retinal to appear at $833 \mathrm{~cm}^{-1}$, but the observed shifts of the weak lines in this region of the $11-\mathrm{D}, 12-\mathrm{D}$, and $11,12-\mathrm{D}_{2}$ spectra are not sufficiently distinctive to permit a definite assignment based on the disappearance of one of these lines. The $\mathrm{HC}_{7}=\mathrm{C}_{8} \mathrm{H} \mathrm{B}_{8}$ HOOP is calculated to appear at $815 \mathrm{~cm}^{-1}$ but cannot be assigned to a particular line.
Few vibrational assignments for monodeuterated ethylene derivatives are available in the literature for comparison with our data. The prototype system, trans-stilbene, was studied in IR and Raman by Meic and Güsten. ${ }^{35}$ Because crystalline trans-stilbene has an inversion center, the A_{v} HOOP is strictly forbidden in the Raman, while the B_{g} is forbidden in the IR. The authors assign the A_{u} HOOP to the very strong IR band at $963 \mathrm{~cm}^{-1}$. Although they also attribute a very weak Raman line at $972 \mathrm{~cm}^{-1}$ to the B_{g} HOOP, we believe this assignment to be incorrect, since it lies well outside the expected frequency range for this vibration. In stilbene several weak depolarized Raman lines lie near $860 \mathrm{~cm}^{-1}$, and one of these probably represents the B_{g} fundamental. In [α-D]stilbene the intense $963-\mathrm{cm}^{-1}$ IR line shifts to $911 \mathrm{~cm}^{-1}$ with little loss of intensity, while a new weak line appears at $706 \mathrm{~cm}^{-1}$ in both IR and Raman spectra. This new $911-\mathrm{cm}^{-1}$ line disappears in $\left[\alpha, \alpha^{\prime}-\mathrm{D}_{2}\right]$ stilbene, and another weak line appears at $714 \mathrm{~cm}^{-1}$. The similarity of these spectral shifts to those observed for retinal indicates that this pattern of deuterium shifts is a common feature of trans disubstituted ethylenic groups.

The assignment of the 10 and 14 HOOPs in retinal is less straightforward, both because of the low observed intensities of these lines and because there are few data available to establish characteristic frequencies. Potts and Nyquist ${ }^{30}$ placed the wagging vibration of a hydrogen trans to a methyl group in the 800-$840-\mathrm{cm}^{-1}$ range for simple substituted ethylenes, with moderate IR intensity. Sverdlov et al. ${ }^{34}$ assign this mode to the strong $808-\mathrm{cm}^{-1}$ IR band of trimethylethylene, which corresponds to a weak Raman line. The absence of significant changes in our [10-D]retinal spectrum between 900 and $950 \mathrm{~cm}^{-1}$ requires that the 10 HOOP lie at a lower frequency. Comparison of the $10-\mathrm{D}$ spectra (Figure 1B) with the unmodified spectra (Figure 1A) shows changes in the $848-890-\mathrm{cm}^{-1}$ region, and a new IR line of moderate intensity at $710 \mathrm{~cm}^{-1}$. The calculations in Table II predict the 10 HOOP to shift from 892 to $708 \mathrm{~cm}^{-1}$ in [10-D]retinal. The $710-\mathrm{cm}^{-1}$ IR line of $10-\mathrm{D}$ can therefore be assigned to the $10-\mathrm{D}$ wag, and the $10-\mathrm{H}$ wag of unmodified retinal should be assigned to one of the weak lines observed between 848 and $890 \mathrm{~cm}^{-1}$. The 14 HOOP is similarly calculated to lie at $871 \mathrm{~cm}^{-1}$, and to shift to $863 \mathrm{~cm}^{-1}$ in the 12-D derivative (Table II). The strong IR line at $862 \mathrm{~cm}^{-1}$ in 12-D, which has little Raman intensity, is best assigned to the 14 HOOP shifted down from $\sim 876 \mathrm{~cm}^{-1}$ with increased IR intensity. The constancy of this line in frequency and IR intensity in the $11,12-\mathrm{D}_{2}$ derivative argues that it is not the 10 HOOP . The large increase in intensity of

[^6]

Figure 2. Raman and IR spectra of 15-monodeuterio all-trans-retinal.
the 14 HOOP in [12-D]retinal is consistent with the calculations, which predict a large reduction of mixing between the $12-\mathrm{H}$ and 14-H wags upon 12-D substitution.

The HOOP vibration of the formyl hydrogen appears near 1000 cm^{-1} in model conjugated aldehydes (e.g., $1016 \mathrm{~cm}^{-1}$ in sorbaldehyde ${ }^{23}$), and our calculations predict the 15 HOOP to lie near $990 \mathrm{~cm}^{-1}$ in retinal. In [15-D]retinal (Figure 2) there is no significant loss of intensity near $1000 \mathrm{~cm}^{-1}$ which can be attributed to the 15 HOOP. Comparison with the calculations, however, suggests that the new weak IR line at $801 \mathrm{~cm}^{-1}$ is due to the shifted $15-\mathrm{D}$ wag. The new IR band appearing at $899 \mathrm{~cm}^{-1}$ is best assigned to the 14 HOOP, which is calculated to shift from 871 to $903 \mathrm{~cm}^{-1}$ upon $15-\mathrm{D}$ substitution (Table II).

A distinction should be made at this point between the extent to which two internal coordinates are coupled and the extent to which they are mixed. For simplicity, consider the two normal modes formed from the combination of two of the internal (basis) coordinates. The coupling between these basis coordinates depends on the magnitude of the off-diagonal term in the FG matrix. Such coupling terms occur either because of the nonorthogonality of the basis coordinates, which gives rise to off-diagonal elements in the \mathbf{G} matrix (kinetic coupling), or because of off-diagonal force constants (potential coupling), or both. The normal modes formed from coupled basis coordinates will be shifted from their unperturbed frequencies (i.e., the frequencies they would have if the coupling were zero), and modification of one of the basis vibrations (e.g., by deuteration) will cause significant frequency shifts of both normal modes. Mixing, on the other hand, is a measure of the degree to which the basis coordinates exchange character in the normal modes. Strongly coupled internal coordinates will typically form strongly mixed normal modes. If the diagonal FG matrix elements of the two basis coordinates are nearly equal, however, they can mix significantly even if the off-diagonal elements of $\mathbf{F G}$ are small, and the normal modes will remain nearly degenerate. Such mixing allows the exchange of IR and Raman intensity, since the resulting normal modes have projections along both internal coordinates. In this case, modification of one of the basis coordinates will shift the frequency of only one of the normal modes, and the resulting vibrations will no longer be mixed because the near-degeneracy has been removed.

The degree to which substituents on adjacent carbon centers couple with each other, forming HOOP normal modes which are mixtures of the individual out-of-plane wags, depends both on the π-bond order of the CC bond joining the substituted centers and on the masses of the substituents. This is illustrated by a comparison of the $10-\mathrm{D}, 11-\mathrm{D}$, and $12-\mathrm{D}$ derivatives with the $11,12-\mathrm{D}_{2}$ and $10,11-\mathrm{D}_{2}$ derivatives. When two protons are trans to a double bond they couple strongly, forming A_{u} and B_{g} combinations widely separated in frequency. The drop of the \mathbf{A}_{u} combination from $959 \mathrm{~cm}^{-1}$ in unsubstituted retinal to 917 or $906 \mathrm{~cm}^{-1}$ in the 11-D or 12-D derivatives is a measure of the extent of this coupling. When both the 11 and 12 centers are deuterated, however, the deuterated wags couple only weakly, since the observed lines in $11,12-\mathrm{D}_{2}$, at 742 and $708 \mathrm{~cm}^{-1}$, have nearly the same frequencies and interisities as the corresponding wags in the monodeuterio derivatives (740 and $722 \mathrm{~cm}^{-1}$, respectively). Our calculations
(Table II) reproduce both the large splitting of the protonated wags and the much reduced coupling when C_{11} and C_{12} are deuterated. The situation is exactly reversed, however, for the C_{10} and C_{11} protons, which are trans to a single bond. When both are protonated, there is little coupling between the wags: the $959-\mathrm{cm}^{-1} \mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H} \mathrm{A}_{\mathrm{u}}$ HOOP drops by no more than $6 \mathrm{~cm}^{-1}$ in [10-D]retinal (Figure 1B). When both centers are deuterated they couple significantly across the single bond. In [10,11-D ${ }_{2}$]retinal (Figure 1F) two new IR lines are observed at 692 and 762 cm^{-1}, which correlate with weak Raman lines at 694 and $762 \mathrm{~cm}^{-1}$. These lines are assigned to the 10-D and 11-D wags, respectively, since they are the only new lines in the $650-800-\mathrm{cm}^{-1}$ region into which the deuterated HOOPs are expected to shift. Upon deuteration at C_{10}, therefore, the 11-D wag has shifted from $740 \mathrm{~cm}^{-1}$ in the 11-D derivative to $762 \mathrm{~cm}^{-1}$, and lost most of its IR intensity. The 10-D wag similarly drops from $710 \mathrm{~cm}^{-1}$ in the $10-\mathrm{D}$ derivative to $692 \mathrm{~cm}^{-1}$ in the $10,11-\mathrm{D}_{2}$ derivative. This splitting indicates a significant coupling of the deuterium wags across the single bond. The drop in IR intensity of the $762-\mathrm{cm}^{-1}$ HOOP shows further that, in agreement with the calculations in Table II, the 10-D and 11-D HOOPs are strongly mixed, with the IR-active A_{u} combination at the lower frequency ($692 \mathrm{~cm}^{-1}$), instead of at the higher frequency as is observed for protons coupled across a double bond.
The dependence of the coupling between adjacent wags on mass and bond order can be understood by considering the potential and kinetic contributions to the energy. The vibrational problem in the Wilson FG method is formulated as

$$
|\mathbf{F G}-\mathbf{E}|=0
$$

where \mathbf{F} is the potential energy matrix, and \mathbf{G} is the inverse kinetic energy matrix. In the simplified case where only two adjacent wags are considered, the problem becomes one of diagonalizing a 2×2 asymmetric FG matrix. The degree of coupling between the wags is determined by the magnitude of the off-diagonal matrix elements, while the symmetry of the higher frequency eigenvector is determined by their signs. An off-diagonal coupling term is given by

$$
f g_{i j}=f_{i i} g_{i j}+f_{i j} g_{j j}
$$

The $g_{j j}$ element equals the inverse reduced mass, while the $g_{i j}$ element is negative and independent of deuteration. The $f_{i j}$ term, representing the potential energy coupling between the wags, is positive and nearly proportional to bond order, whereas the $f_{i i}$ term is nearly independent of the bond order between the wags. The first term is thus negative and independent of either bond order or substituent mass, while the second term is positive and is smaller for deuterium substituents and for single bonds. The magnitudes of these elements are such that the net coupling term $f g_{i j}$ is positive for protons across a double bond, nearly zero for deuterons across a double bond or for protons across a single bond, and negative for deuterons across a single bond. ${ }^{36}$ This simple two-mode model can thus qualitatively explain the patterns observed for the $10-\mathrm{H}$, $11-\mathrm{H}$, and $12-\mathrm{H}$ wags of retinal, and leads us to formulate the following general rules for HOOP frequencies in trans substituted polyene systems:

1. Hydrogens trans to a double bond couple strongly $\left(f_{\mathrm{gij}}\right\rangle$ 0) forming an " A_{u} " HOOP in the $950-970-\mathrm{cm}^{-1}$ range which is strongly IR active, and a " B_{g} " HOOP from 750 to $850 \mathrm{~cm}^{-1}$ which is weak and poorly characterized. The $950-970-\mathrm{cm}^{-1}$ IR group frequency is well known, and is nearly independent of the nature of any hydrocarbon substituents. ${ }^{30}$ The observation of this line in its accustomed place in retinal ($\lambda_{\max } \simeq 360 \mathrm{~nm}$), as well as in the protonated Schiff base of retinal ($\lambda_{\max } \simeq 440 \mathrm{~nm}$) at 967 $\mathrm{cm}^{-1},{ }^{5}$ a shows that the increased delocalization of the double bonds does not significantly alter this frequency.
2. A proton and a deuteron trans across a double bond give rise to two lines, one due to the largely uncoupled H wag (900-920
(36) Typical values for retinal are: $f_{i i}=0.465, f_{i j}=0.170$ (double bond), $f_{i j}=0.070$ (single bond), $g_{j j}=1.353$ (H wag), $g_{j j}=0.924$ (D wag), $g_{i j}=$ -0.274 . (Units of F are $\mathrm{md} y \mathrm{n} \cdot \AA / \mathrm{rad}^{2}$, units of \mathbf{G} are $\mathrm{rad}^{2} / \AA^{2}$.dalton. Using these values gives $f g_{i j}=0.103$ (double-bonded H), 0.030 (double-bonded D), -0.033 (single-bonded H), and -0.063 (single-bonded D.)

Figure 3. Raman and IR spectra of 9 -demethyl-all-trans-retinal.
cm^{-1}) and the other due to the D wag ($700-750 \mathrm{~cm}^{-1}$). The data for trans-stilbene discussed above indicate that this shifting pattern is not unique to retinal, and that it does not depend upon the presence of adjacent protons. The RR spectra of [11-D]- and [12-D]isorhodopsin ${ }^{13}$ demonstrate that this shifting pattern can also occur when the chromophore is embedded in a protein where it has a strongly red-shifted absorption maximum. It is interesting to note that the 11 -cis chromophore of rhodopsin also conforms to this pattern: the native pigment has an intense RR line at 969 cm^{-1}, which shifts to $922 \mathrm{~cm}^{-1}$ in [11-D]rhodopsin and to $923 \mathrm{~cm}^{-1}$ in [12-D]rhodopsin. ${ }^{13}$
3. Deuterons trans to a double bond couple weakly or not at all with each other $\left(f g_{i j} \simeq 0\right)$. Deuterons trans to a single bond, on the other hand, couple more strongly than do protons, and the A_{u} symmetry combination lies at the lower frequency $\left(f_{i j}\right.$ <0). This pattern of "single bond" coupling is also observed for the $10-\mathrm{H}$ and $11-\mathrm{H}$ protons of bathorhodopsin, which couple only slightly when both are protonated, but split by $37 \mathrm{~cm}^{-1}$ when deuterated. ${ }^{13}$ These data have been used to show that bathorhodopsin contains a $\mathrm{C}_{10}-\mathrm{C}_{11}$ single bond with a bond order not greatly different from that of all-trans-retinal. The observed coupling between adjacent hydrogen wags can thus provide the means for experimental estimation of individual bond orders in retinal-containing pigments.
4. A proton trans to a CH_{3} group across a double bond appears between 850 and $900 \mathrm{~cm}^{-1}$. When deuterated, it appears near $700 \mathrm{~cm}^{-1}$. Our calculations predict that, if identical force constants are used, the kinetic coupling with the adjacent CH_{3} group out-of-plane wag gives an isolated frequency near $890 \mathrm{~cm}^{-1}, \sim 20$ cm^{-1} lower than that for a proton trans to a deuteron (Table II). The assignment of $10-\mathrm{H}$ and $14-\mathrm{H}$ HOOPs in the $850-890-\mathrm{cm}^{-1}$ region of all-trans-retinal is consistent with the unambiguous assignment of the intense RR lines at 875 and $854 \mathrm{~cm}^{-1}$ in bathorhodopsin to the $10-\mathrm{H}$ and $14-\mathrm{H}$ wags, respectively. ${ }^{13}$

The spectra of 9 - and 13 -demethylretinal illustrate the coupling of adjacent \mathbf{A}_{u} HOOPs across single bonds. In 9-demethylretinal, the $\mathrm{HC}_{7}=\mathrm{C}_{8} \mathrm{H}, \mathrm{HC}_{9}=\mathrm{C}_{10} \mathrm{H}$, and $\mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H} \mathrm{A}_{\mathrm{u}}$ HOOPs can couple with one another to produce an evenly spaced triplet of normal modes. The calculations (Table III) predict the in-phase (relative $\mathrm{A}_{u} \mathrm{HOOP}$ phases +++) combination to lie at $998 \mathrm{~cm}^{-1}$, the ($+0-$) combination at $960 \mathrm{~cm}^{-1}$, and the combination with two nodes $(+-+)$ at $923 \mathrm{~cm}^{-1}$. These predicted frequencies are in good agreement with the observed weak Raman lines at 998, 962 , and $925 \mathrm{~cm}^{-1}$ (Figure 3), split by $36 \mathrm{~cm}^{-1}$. As expected, the in-phase combination at $998 \mathrm{~cm}^{-1}$ exhibits most of the IR intensity. In 13-demethylretinal there are two adjacent unsubstituted double bonds, the $\mathrm{HC}_{11}=\mathrm{C}_{12} \mathrm{H}$ and the $\mathrm{HC}_{13}=\mathrm{C}_{14} \mathrm{H}$. The two corresponding A_{u} HOOPs are split by $42 \mathrm{~cm}^{-1}$, giving rise to an IRactive in-phase combination at $984 \mathrm{~cm}^{-1}$ and a weak out-of-phase combination at $942 \mathrm{~cm}^{-1}$ (Figure 4), in agreement with the calculated values of 984 and $941 \mathrm{~cm}^{-1}$ (Table IV). The $\mathrm{HC}_{7}=$ $\mathrm{C}_{8} \mathrm{H} \mathrm{A}_{u}$ HOOP remains isolated at $967 \mathrm{~cm}^{-1}$. The agreement between observed and calculated A_{u} HOOP frequencies in the

Table III. Frequencies and Assignments for 9-Demethylretinal ${ }^{a}$

	obsd	calcd	description
in-plane	1663	1664	$0.36(\mathrm{C}=\mathrm{O})+0.55(15 \mathrm{H})-0.11(14-15)$
	1580	1581	$0.24(11=12)+0.20(7=8)+$
			$0.57(11 \mathrm{H})-0.52(12 \mathrm{H})-0.13(8-9)-$
		1572	$0.25(9=10)-0.21(13=14)+$
			$0.50(10 \mathrm{H})-0.49(9 \mathrm{H})-$
			$0.11(10-11)+0.14(12-13)+$
			$0.10(14-15)$
		1553	$\begin{gathered} 0.27(13=14)+0.20(9=10)+ \\ 0.58(14 \mathrm{H})-0.13(14-15) \end{gathered}$
	1333	1332	$\begin{aligned} & 0.58(14 \mathrm{H})+0.14(12-13)-0.19(13- \\ & \left.\mathrm{CH}_{3}\right) \end{aligned}$
	1268	1268	$\begin{aligned} & 0.52(11 \mathrm{H})+0.16(9=10)+ \\ & 0.14(11=12) \end{aligned}$
	1252	1261	$\begin{aligned} & 0.52(11 \mathrm{H})+0.57(12 \mathrm{H})-0.57(7 \mathrm{H})- \\ & 0.50(8 \mathrm{H})+0.12(12-13) \end{aligned}$
	1214	1217	$\begin{aligned} & 0.20(12-13)-0.10(10-11)+ \\ & 0.53(14 \mathrm{H}) \end{aligned}$
	1172	1161	0.28(10-11)
	1149	1141	$0.23(8-9)+0.09(6-7)+0.08(10-11)$
	1016	1017	$0.69\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+0.14(12-13)$
		874	$0.25\left(13-\mathrm{CH}_{3}\right)$
HOOP	998	998	$\begin{gathered} 0.49(9 w)+0.46(10 w)+0.34(7 w)+ \\ 0.40(8 w)+0.29(11 w)+0.25(12 w) \end{gathered}$
		990	$1.13(15 w)-0.48(14 w)$
	962	960	$\begin{aligned} & 0.47(7 w)+0.46(8 w)-0.48(11 w)- \\ & 0.50(12 w) \end{aligned}$
	925	923	$\begin{aligned} & 0.38(7 w)+0.29(8 w)-0.44(9 w)- \\ & 0.53(10 w)+0.38(11 w)+0.43(12 w) \end{aligned}$
		882	$\begin{aligned} & 0.72(11 w)-0.60(12 w)-0.55(14 w)+ \\ & 0.36(9 w)-0.52(10 w) \end{aligned}$
		855	$0.81(14 w)+0.50(9 w)-0.46(10 w)$
		824	$\begin{aligned} & 0.73(7 w)-0.76(8 w)-0.40(11 w)+ \\ & 0.45(12 w) \end{aligned}$
		789	$\begin{aligned} & 0.55(7 w)-0.34(8 w)-0.55(9 w)+ \\ & 0.59(10 w)+0.28(11 w)-0.47(12 w) \end{aligned}$

${ }^{a}$ Symbols used: H, in-plane hydrogen rock; w, out-of-plane wag; $\mathrm{r}, \mathrm{CH}_{3}$ in-plane rock. The in-plane hydrogen rocks are defined as linear combinations of the two valence bends involving the rocking hydrogen (e.g., $11 \mathrm{H} \equiv 1 / \sqrt{2}\left(\mathrm{C}_{10} \mathrm{C}_{11} \mathrm{H}-\mathrm{C}_{12} \mathrm{C}_{11} \mathrm{H}\right.$). The in-plane and out-of-plane methyl rocks are defined as in ref 22. Only the more prominent lines and those discussed in the text are given.

Figure 4. Raman and IR spectra of 13-demethyl-all-trans-retinal.
demethyl derivatives provides further confirmation that wag-wag coupling across single bonds is correctly modeled by our force field.

In-Plane Chain Vibrations

The in-plane vibrations of the retinal chain can be classified into groups which are relatively isolated in frequency. The five $\mathrm{C}=\mathrm{C}$ stretches and the $\mathrm{C}=\mathrm{O}$ stretch appear between 1500 and $1700 \mathrm{~cm}^{-1}$. The fingerprint region from 1100 to $1400 \mathrm{~cm}^{-1}$ contains $\mathrm{C}-\mathrm{C}$ stretches and CCH in-plane bends mixed in com-

Table IV. Frequencies and Assignments of 13-Demethylretinal ${ }^{a}$

	obsd	calcd	description
in-plane	1680	1661	$0.36(\mathrm{C}=\mathrm{O})+0.57(15 \mathrm{H})-0.12(14-15)$
	1610	1609	$0.39(5=6)-0.18(6-7)$
	1579	1579	$0.26(11=12)+0.15(7=8)+$
			$0.15(9=10)+0.65(11 \mathrm{H})-$
			$0.52(12 \mathrm{H})-0.12(8-9)-$
			$0.18(10-11)-0.11(12-13)$
		1316	$0.56(11 \mathrm{H})+0.23(8-9)-0.17\left(9-\mathrm{CH}_{3}\right)$
	1290	1298	$0.66(14 \mathrm{H})-0.77(12 \mathrm{H})+0.11(11=12)$
	1257	1270	$\begin{aligned} & 0.44(11 \mathrm{H})-0.52(14 \mathrm{H})+ \\ & 0.14(11=12)+0.14(13=14) \end{aligned}$
		1228	$0.70(13 \mathrm{H})+0.56(14 \mathrm{H})$
	1222	1203	$\begin{aligned} & 0.13(8-9)+0.48(8 \mathrm{H})+0.49(10 \mathrm{H})+ \\ & 0.51(11 \mathrm{H})+0.44(12 \mathrm{H}) \end{aligned}$
	1186	1176	$\begin{aligned} & 0.26(10-11)-0.11(12-13)+ \\ & 0.46(10 \mathrm{H}) \end{aligned}$
	1157	1141	$0.28(12-13)+0.12(10-11)$
	1015	1019	$0.69\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+0.13(8-9)$
		885	$0.24\left(9-\mathrm{CH}_{3}\right)$
HOOP		995	$1.03(15 w)+0.44(13 w)$
	984	984	$\begin{aligned} & 0.40(11 w)+0.44(12 w)+0.35(13 w)+ \\ & 0.59(14 w)-0.50(15 w) \end{aligned}$
	967	964	$0.65(7 w)+0.72(8 w)$
	942	941	$\begin{aligned} & 0.45(11 w)+0.45(12 w)-0.46(13 w)- \\ & 0.52(14 w)+0.30(10 w) \end{aligned}$
	892	891	$1.00(10 w)-0.65(11 w)$
		849	$\begin{aligned} & 0.90(12 w)-0.59(11 w)-0.42(13 w)+ \\ & 0.22(14 w) \end{aligned}$
		816	$0.87(7 w)-0.83(8 w)+0.33(10 w)$
		770	$\begin{aligned} & 0.73(13 w)-0.78(14 w)-0.36(11 w)+ \\ & 0.21(12 w)-0.21(15 w) \end{aligned}$

${ }^{a}$ See footnotes to Table III.
binations which are strongly dependent on chain configuration. Finally, the skeletal CCC and CCCH_{3} bending modes are calculated to lie below $700 \mathrm{~cm}^{-1}$ and to involve a small degree of in-plane hydrogen motion, and thus to be slightly sensitive to chain deuteration. On this basis the two weak Raman lines at 596 and $651 \mathrm{~cm}^{-1}$ (Figure 1A), which shift by $\sim 10 \mathrm{~cm}^{-1}$ in the deuterated derivatives, are assigned to CCC bends.

Double-Bond Stretches. The $\mathrm{C}=\mathrm{O}$ stretch has been assigned to the Raman line at $1663 \mathrm{~cm}^{-1},{ }^{14}$ and the intense IR absorption at $1660 \mathrm{~cm}^{-1}$ in Figure 5 fully confirms this assignment. The drop of the frequency of this line to $1656 \mathrm{~cm}^{-1}$ in [15-D]retinal (Figure 2) agrees well with the calculated drop from 1664 to $1651 \mathrm{~cm}^{-1}$ due to coupling with the $\mathrm{C}_{15} \mathrm{H}$ in-plane rock. Note that this line shows a weak solvent dependence, appearing at $1663 \mathrm{~cm}^{-1}$ in CCl_{4} solution, $1660 \mathrm{~cm}^{-1}$ in the amorphous thin film, and $1654 \mathrm{~cm}^{-1}$ in the crystal. ${ }^{37}$

In our solution Raman and thin-film IR spectra (Figure 5) only three lines can be observed between 1500 and $1650 \mathrm{~cm}^{-1}$ which could be assigned to the five $\mathrm{C}=\mathrm{C}$ fundamentals: the weak IR band at $1611 \mathrm{~cm}^{-1}$, the rather broad intense Raman and IR line at $1577 \mathrm{~cm}^{-1}$, and a weak shoulder near $1550 \mathrm{~cm}^{-1}$. In the crystal Raman spectrum, however, five lines in this region are resolved, at $1547,1568,1594,1611$, and $1634 \mathrm{~cm}^{-1} .37$ Because the $\mathrm{C}=\mathrm{C}$ stretches incorporate significant contributions of CCH in-plane rocking motion of bonded hydrogens, these lines are expected to be sensitive to vinyl deuteration. First, note that the intense Raman line at $1577 \mathrm{~cm}^{-1}$ shifts only slightly to $1574 \mathrm{~cm}^{-1}$ in the $10-\mathrm{D}$ derivative (Figure 5B), although it is significantly narrowed, and the $1554-\mathrm{cm}^{-1}$ shoulder becomes much more prominent. In the 11-D and 12-D derivatives, however, this intense line splits into a doublet near 1555 and $1567 \mathrm{~cm}^{-1}$ (Figure 5C,D), while in the $11,12-\mathrm{D}_{2}$ derivative the doublet appears at 1536 and $1567 \mathrm{~cm}^{-1}$ (Figure 5 E). In the $10,11-\mathrm{D}_{2}$ derivative a single broad line is observed at $1556 \mathrm{~cm}^{-1}$ (Figure 5F). We conclude that the $1577-\mathrm{cm}^{-1}$ line of the unmodified compound is in reality composed of two nearly degenerate, unresolved lines near 1577 and 1567
(37) Cookingham, R. E.; Lewis, A.; Collins, D. W.; Marcus, M. A. J. Am. Chem. Soc. 1976, 98, 2759.

Figure 5. Raman and IR spectra of the $900-1700-\mathrm{cm}^{-1}$ region of all-trans-retinal (A) and its 10 -monodeuterio (B), 11-monodeuterio (C), 12-monodeuterio (D), 11,12-dideuterio (E), and 10,11-dideuterio (F) derivatives.
cm^{-1}, and that the $1577-\mathrm{cm}^{-1}$ component downshifts by $\sim 20 \mathrm{~cm}^{-1}$ upon C_{11} or C_{12} deuteration and by $40 \mathrm{~cm}^{-1}$ when both are deuterated. The $1567-\mathrm{cm}^{-1}$ component, on the other hand, is relatively insensitive to C_{11} or C_{12} deuteration, but shifts to $\sim 1550 \mathrm{~cm}^{-1}$ when C_{10} is deuterated. The decreased line widths of the $1567-$ cm^{-1} line of $11,12-\mathrm{D}_{2}$ and of the $1574-\mathrm{cm}^{-1}$ line of $10-\mathrm{D}$ support this placement of two unresolved lines near $1577 \mathrm{~cm}^{-1}$. Deconvolution of the $1577-\mathrm{cm}^{-1}$ band using the methods of Sundius ${ }^{38}$ gives the best fit to three bands at 1578,1569 , and $1550 \mathrm{~cm}^{-1}$, with relative integrated intensities of $1.0,0.37$, and 0.10 , respectively, each having a line width of $\sim 15 \mathrm{~cm}^{-1}$. The calculations in Table V predict the $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch to downshift by $\sim 22 \mathrm{~cm}^{-1}$ upon deuteration of either the 11 or 12 position and by $45 \mathrm{~cm}^{-1}$ when both positions are deuterated, while the $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretch remains nearly constant. The intense line at $1577 \mathrm{~cm}^{-1}$ in the unmodified compound can therefore be assigned to the $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch, which shifts to $1574 \mathrm{~cm}^{-1}$ in 10-D, to $1556 \mathrm{~cm}^{-1}$ in 11-D and $10,11-\mathrm{D}_{2}$, to $1553 \mathrm{~cm}^{-1}$ in 12-D, and to $1536 \mathrm{~cm}^{-1}$ in $11,12-\mathrm{D}_{2}$ retinals. The observation that the effects on the $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch frequency of deuteration at the 11 and 12 positions are nearly equal and additive indicates that the $\mathrm{C}_{11} \mathrm{H}$ and $\mathrm{C}_{12} \mathrm{H}$ rocks contribute equally to this normal mode, as predicted by the calculations (Table V). The $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretch is predicted to be sensitive to $10-\mathrm{D}$ substitution, downshifting from $1572 \mathrm{~cm}^{-1}$ in the unmodified retinal to $1547 \mathrm{~cm}^{-1}$ in $10-\mathrm{D}$, while the $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch remains virtually unchanged in frequency. The unresolved shoulder near $1569 \mathrm{~cm}^{-1}$ in unmodified retinal, the $1554-\mathrm{cm}^{-1}$ Raman shoulder in [10-D]retinal, and the more intense resolved lines at $1567 \mathrm{~cm}^{-1}$ in the $11-\mathrm{D}, 12-\mathrm{D}$, and $11,12-\mathrm{D}_{2}$ derivatives can thus be assigned to the $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretching vibration. The fact that the $\mathrm{C}_{11}=\mathrm{C}_{12}$ and $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretches alone account for over 90% of the PRR intensity in the ethylenic region indicates that the bond-order changes upon electronic excitation of retinal are largely concentrated in the region of these two double bonds.

[^7]Table V. Frequencies and Assignments of $\mathrm{C}=\mathrm{C}$ Stretches for Retinal ${ }^{a}$

	obsd	calcd	description		obsd	calcd	description
unmodified	1611	1609	$0.39(5=6)-0.17(6-7)$	12-D	1609	1609	$0.39(5=6)-0.18(6-7)$
	1594	1596	$\begin{gathered} 0.28(7=8)-0.19(11=12)+0.55(7 \mathrm{H})- \\ 0.63(8 \mathrm{H})-0.15(6-7)-0.15(8-9) \end{gathered}$		1595	1593	$\begin{aligned} & 0.33(7=8)+0.64(7 \mathrm{H})-0.71(8 \mathrm{H})- \\ & 0.17(6-7)-0.17(8-9) \end{aligned}$
	1577	1580	$\begin{aligned} & 0.27(11=12)+0.17(7=8)+ \\ & 0.61(11 \mathrm{H})-0.59(12 \mathrm{H})-0.11(8-9)- \\ & 0.16(10-11)-0.13(12-13) \end{aligned}$		1567	1574	$\begin{aligned} & 0.28(9=10)-0.14(13=14)+ \\ & 0.12(11=12)+0.67(10 \mathrm{H})- \\ & 0.49(11 \mathrm{H})-0.30(14 \mathrm{H})-0.12(8-9)- \end{aligned}$
	1568	1572	$\begin{aligned} & 0.27(9=10)-0.19(13=14)+ \\ & 0.54(10 \mathrm{H})-0.09(8-9)- \\ & 0.13(10-11)+0.12(12-13)+ \\ & 0.09(14-15) \end{aligned}$		1553	1556	$\begin{aligned} & 0.20(10-11) \\ & 0.32(11=12)-0.13(9=10)+ \\ & 0.11(7=8)+0.57(11 \mathrm{H})- \\ & 0.43(12 \mathrm{D})-0.08(10-11)- \end{aligned}$
	1550	1555	$\begin{aligned} & 0.28(13=14)+0.19(9=10)+ \\ & 0.60(14 \mathrm{H})-0.33(15 \mathrm{H})- \\ & 0.14(14-15) \end{aligned}$			1554	$\begin{aligned} & 0.17(12-13) \\ & 0.31(13=14)+0.16(9=10)+ \\ & 0.64(14 \mathrm{H})-0.36(15 \mathrm{H})- \\ & 0.11(12-13)-0.15(14-15) \end{aligned}$
10-D	1611	1609	$0.39(5=6)-0.17(6-7)$				
	1596	1596	$\begin{gathered} 0.29(7=8)-0.17(11=12)+0.56(7 \mathrm{H})- \\ 0.66(8 \mathrm{H})-0.15(6-7)-0.16(8-9) \end{gathered}$	$11,12-\mathrm{D}_{2}$	$\begin{aligned} & 1608 \\ & 1596 \end{aligned}$	$\begin{aligned} & 1609 \\ & 1593 \end{aligned}$	$\begin{aligned} & 0.39(5=6)-0.18(6-7) \\ & 0.33(7=8)+0.65(7 \mathrm{H})-0.74(8 \mathrm{H})- \end{aligned}$
	1574	1578	$\begin{aligned} & 0.27(11=12)+0.18(7=8)+ \\ & 0.50(11 \mathrm{H})-0.66(12 \mathrm{H})-0.10(6-7)- \\ & 0.08(10-11)-0.17(12-13) \\ & 0.29(13=14)-0.14(9=10)- \\ & 0.13(11=12)+0.61(14 \mathrm{H})- \end{aligned}$		1567	1569	$\begin{aligned} & 0.18(6-7)-0.18(8-9) \\ & 0.29(9=10)-0.18(13=14)+ \\ & 0.59(10 \mathrm{H})-0.36(14 \mathrm{H})-0.10(8-9)- \\ & 0.15(10-11)+0.10(12-13)+ \\ & 0.08(14-15) \end{aligned}$
		1561	$\begin{aligned} & 0.34(15 \mathrm{H})+0.14(10-11)- \\ & 0.14(14-15) \\ & 0.32(9=10)+0.15(13=14)+ \end{aligned}$		1555	1554	$\begin{gathered} 0.29(13=14)+0.18(9=10)+ \\ 0.62(14 \mathrm{H})-0.34(15 \mathrm{H})- \end{gathered}$
	1551	1547	$\begin{aligned} & 0.36(10 \mathrm{D})+0.31(14 \mathrm{H})- \\ & 0.11(8-9)-0.14(10-11) \end{aligned}$		1536	1535	$\begin{aligned} & 0.36(11=12)+0.46(11 \mathrm{D})- \\ & 0.47(12 \mathrm{D})-0.36(10 \mathrm{H})- \\ & 0.18(10-11)-0.18(12-13) \end{aligned}$
$11-\mathrm{D}$	$\begin{aligned} & 1609 \\ & 1598 \end{aligned}$	$\begin{aligned} & 1609 \\ & 1594 \end{aligned}$	$0.39(5=6)-0.18(6-7)$				$0.18(10-11)-0.18(12-13)$
			$\begin{aligned} & 0.32(7=8)+0.62(7 \mathrm{H})-0.72(8 \mathrm{H})- \\ & 0.17(6-7)-0.18(8-9) \end{aligned}$	$10,11-\mathrm{D}_{2}$	$\begin{aligned} & 1610 \\ & 1595 \end{aligned}$	$\begin{aligned} & 1609 \\ & 1594 \end{aligned}$	$\begin{aligned} & 0.39(5=6)-0.17(6-7) \\ & 0.32(7=8)+0.62(7 \mathrm{H})-0.72(8 \mathrm{H})- \end{aligned}$
	1566	1573	$\begin{aligned} & 0.22(9=10)-0.14(11=12)- \\ & 0.20(13=14)+0.37(10 \mathrm{H})- \\ & 0.48(12 \mathrm{H})-0.38(14 \mathrm{H})+ \\ & 0.16(12-13)+0.09(14-15) \end{aligned}$			1571	$\begin{gathered} 0.17(6-7)-0.18(8-9) \\ 0.20(11=12)+0.22(13=14)- \\ 0.14(9=10)+0.61(12 \mathrm{H})+ \\ 0.41(14 \mathrm{H})-0.28(15 \mathrm{H})- \end{gathered}$
	1556	1559	$\begin{aligned} & 0.63(10 \mathrm{H})-0.38(11 \mathrm{D})+ \\ & 0.55(12 \mathrm{H})-0.10(8-9)- \\ & 0.21(10-11)-0.12(12-13) \end{aligned}$		1556	1553	$\begin{gathered} 0.26(13=14)-0.22(11=12)+ \\ 0.58(14 \mathrm{H})-0.29(15 \mathrm{H})+ \\ 0.07(10-11)-0.13(14-15) \end{gathered}$
		1553	$\begin{gathered} 0.27(13=14)-0.20(11=12)+ \\ 0.11(9=10)+0.59(14 \mathrm{H})- \\ 0.30(15 \mathrm{H})-0.14(14-15) \end{gathered}$		1544	1542	$\begin{aligned} & 0.31(9=10)+0.17(11=12)+ \\ & 0.42(10 \mathrm{D})-0.32(11 \mathrm{D})+ \\ & 0.40(12 \mathrm{H})-0.12(8-9)- \\ & 0.22(10-11)-0.07(12-13) \end{aligned}$

${ }^{a}$ All internal coordinates contributing $>10 \%$ to the potential energy of the normal mode are included. Coefficients of CC stretches, because of their greater reduced mass, are $\sim 1 / \sqrt{6}$ of CCH rocking coefficients having comparable potential energy contributions.

Because the $\mathrm{C}=\mathrm{C}$ stretching lines are due to normal modes involving primarily motion of adjacent conjugated carbon atoms, it would be expected that they would have kinetic and potential energy interactions with each other. The frequency shift of each line upon deuteration at the other bond is a measure of the strength of the coupling between them, and this coupling is quite weak (e.g., the $1577 \rightarrow 1574 \mathrm{~cm}^{-1}$ shift of the $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch in $10-\mathrm{D}$, and the $\sim 1569 \rightarrow 1567 \mathrm{~cm}^{-1}$ shift of the $\mathrm{C}_{9}=\mathrm{C}_{10}$ stretch in $11-\mathrm{D}$ and 12-D). It is therefore possible to describe these $\mathrm{C}=\mathrm{C}$ stretching normal modes as primarily localized stretches of individual double bonds. The variation of intensity among the $\mathrm{C}=\mathrm{C}$ stretching modes in the derivatives indicates that some mixing of mode character occurs in either the ground or the excited state, however, which is expected for nearly degenerate lines even if the interaction constants are quite small.

The remaining three fundamentals due to the $\mathrm{C}_{5}=\mathrm{C}_{6}, \mathrm{C}_{7}=\mathrm{C}_{8}$, and $C_{13}=C_{14}$ stretches cannot be so readily assigned from our data, both because of their low intensity and because none of these carbon atoms was substituted. Our calculations predict these stretches to appear between 1550 and $1620 \mathrm{~cm}^{-1}$ and to be insensitive to deuteration at $\mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}$, or C_{15}. Three resolved lines appear in the crystal Raman spectrum at 1547,1594 , and $1611 \mathrm{~cm}^{-1},{ }^{37}$ and lines appear within $3 \mathrm{~cm}^{-1}$ of 1594 and 1611 cm^{-1}, with varying intensity, in the IR and/or Raman spectra of all of our derivatives (Figures $5 A-F$). The $1551-\mathrm{cm}^{-1}$ line is masked by the intense $\mathrm{C}_{9}=\mathrm{C}_{10}$ or $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch in all of the derivatives except $11,12-\mathrm{D}_{2}, 15-\mathrm{D}$, and unmodified retinal, in which it appears as a weak shoulder. The spectra of retinal analogues
with truncated conjugated chains can help to empirically distinguish the $\mathrm{C}_{13}=\mathrm{C}_{14}$ stretch from the two $\mathrm{C}=\mathrm{C}$ stretches near the β-ionyl ring. The PRR spectrum of β-ionone shows two strong lines at 1591 and $1605 \mathrm{~cm}^{-1}$, which must be due to the $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches. ${ }^{8 \mathrm{~b}, 23}$ Also, the IR and PRR spectra of all-trans " C_{18}-ketone", in which C_{14} is replaced by a carbonyl oxygen, show $\mathrm{C}=\mathrm{C}$ stretching lines at 1571,1591 , and 1601 (sh) $\mathrm{cm}^{-1},{ }^{23}$ with the shoulder observed at $1550 \mathrm{~cm}^{-1}$ in retinal conspicuously absent. This suggests that the $1611-$ and $1594-\mathrm{cm}^{-1}$ lines of retinal should be assigned to the $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches, while the $1550-\mathrm{cm}^{-1}$ shoulder is due to the $\mathrm{C}_{13}=\mathrm{C}_{14}$ stretch. The relatively constant frequency of the ~ 1595 - and $\sim 1605-\mathrm{cm}^{-1}$ lines in these model compounds, which differ in the length of their conjugated chains, is consistent with the assignment of these lines to the $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches, since the twist of the chain about the $C_{6}-C_{7}$ bond ${ }^{26}$ is likely to make these double-bond stretching frequencies less sensitive to increased π-electron delocalization. The analogous weak lines observed at 1580 and $1599 \mathrm{~cm}^{-1}$ in light-adapted bacteriorhodopsin are also probably due to the $\mathrm{C}_{5}=\mathrm{C}_{6}$ and $\mathrm{C}_{7}=\mathrm{C}_{8}$ stretches. ${ }^{5 \mathrm{c}}$

Fingerprint $\mathbf{C}-\mathbf{C}$ Stretches, The fingerprint $\mathrm{C}-\mathrm{C}$ stretches and CCH rocks are considerably mixed with each other, so that characterization of a normal mode as a localized rock or stretch is only approximate, although sometimes convenient. Because the character of the normal modes varies in the derivatives, it is often more useful to describe the effects of deuteration as the increase or withdrawal of a particular component of a normal mode, resulting in a frequency shift, rather than as a shift of a

Figure 6. Raman spectrum of 19-trideuterio-all-trans-retinal.
substantially unchanged vibration. Also, because these modes derive their Raman intensity from admixtures of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ stretches, ${ }^{39}$ which may be minor components of the normal mode, considerable intensity variation can occur even for normal modes whose major rocking components remain the same.

As noted by Rimai, ${ }^{14}$ the C-C stretches should appear with intensity in both IR and Raman spectra, while the CCH bends are expected to be weak in both. In extended long-chain polyenes the $\mathrm{C}-\mathrm{C}$ stretches are delocalized along the chain, and only the lowest frequency, totally symmetric stretch combination appears intensely near $1140 \mathrm{~cm}^{-1}$ (e.g., $1138 \mathrm{~cm}^{-1}$ in diphenyltetridecaheptaene ${ }^{40}$). In retinal, however, this simple vibrational pattern is altered by the interaction of the methyl groups on C_{9} and C_{13} with the adjacent $\mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches. The strong interaction of the $\mathrm{C}-\mathrm{CH}_{3}$ stretches with the adjacent $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ stretches is almost entirely kinetic in origin and will occur for any reasonable force field. Its effect is to raise the $\mathrm{C}-\mathrm{C}$ stretching vibration by $\sim 80 \mathrm{~cm}^{-1}$, while lowering the $\mathrm{C}-\mathrm{CH}_{3}$ stretch by approximately the same amount. For example, the effect of substituting a CH_{3} group onto a conjugated single bond is well illustrated by comparing butadiene, which has $\mathrm{C}-\mathrm{C}$ stretch at 1205 and CCH rock at $1279 \mathrm{~cm}^{-1},{ }^{18}$ with isoprene, whose $\mathrm{C}-\mathrm{C}$ stretch and CCH rock shift up to 1289 and $1300 \mathrm{~cm}^{-1}$ when mixed with the $\mathrm{C}-\mathrm{H}_{3}$ stretch at $953 \mathrm{~cm}^{-1} .^{21}$ In retinal, as will be discussed below, the increased frequency of the $\mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches, caused by mixing with the adjacent $\mathrm{C}-\mathrm{CH}_{3}$ stretches, raises them to a frequency range where they mix more strongly with CCH rocks ($1200-1350 \mathrm{~cm}^{-1}$). The Raman spectrum of retinal therefore has a more complex fingerprint than that of unsubstituted polyenes, as suggested by Stockburger et al., ${ }^{9}$ because the intrinsic intensity of the $\mathrm{C}-\mathrm{C}$ stretches is distributed among more than a single line.

We begin by assigning the intense IR and Raman line at 1163 cm^{-1} to the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch for the following reasons. First, this is the only $\mathrm{C}-\mathrm{C}$ bond of the chain which has an environment similar to that of a long unsubstituted polyene, and should therefore exhibit a "normal" frequency near $1160 \mathrm{~cm}^{-1}$. Second, the Raman line at $1163 \mathrm{~cm}^{-1}$ is insensitive to deuteration at C_{10}, C_{12}, or C_{19} (Figures 5B,5D,6), but increases to $1171 \mathrm{~cm}^{-1}$ in the 11-D derivative (Figure 5 C) and to $\sim 1178 \mathrm{~cm}^{-1}$ in the $11,12-\mathrm{D}_{2}$ and $10,11-\mathrm{D}_{2}$ (Figure 5E,F). Our calculations (Table VI) predict the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch to couple weakly with the $\mathrm{C}_{11} \mathrm{H}$ rock, and to shift up by $8 \mathrm{~cm}^{-1}$ when C_{11} is deuterated. The $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch is calculated to couple less with the $\mathrm{C}_{10} \mathrm{H}$ rock, which lies at higher frequency than the $\mathrm{C}_{11} \mathrm{H}$ rock (see below), and also to be uncoupled from the more distant $\mathrm{C}_{12} \mathrm{H}$ rock. Therefore, the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch should be nearly unaffected by deuteration at C_{10} and C_{12}, as observed. Third, the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch should be sensitive to the configuration of the adjacent double bonds. The 13 -cis retinal isomer has a line near $1163 \mathrm{~cm}^{-1}$, while the 9 -cis and 11 -cis isomers do not have lines at this frequency. ${ }^{8 \mathrm{~b}}$

Although the frequency of the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch is insensitive to deuteration at C_{10} or C_{12}, the IR and especially the Raman in-

[^8]tensity of this line decreases in the $10-\mathrm{D}, 12-\mathrm{D}, 10,11-\mathrm{D}_{2}$, and $11,12-\mathrm{D}_{2}$ derivatives. The drop in IR intensity can qualitatively be attributed to a decrease of the contribution of the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch coordinate to this normal mode in the deuterated derivatives (see Table VI). However, the calculated decrease in $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch character is insufficient to explain the \sim four-fold decrease of relative intensity observed in the Raman spectrum of the 10,11- D_{2} derivative. Preresonance Raman intensity depends on the character of both the ground- and excited-state normal modes. Because the reduction of intensity of the $\sim 1163-\mathrm{cm}^{-1}$ line in the derivatives is more marked in the Raman spectra than in the IR spectra, it is likely that deuteration also changes this normal mode in the excited state.
The $\mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches are expected to lie at higher frequency than the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch, because of their coupling with the adjacent methyl stretches. Two moderately intense IR bands are observed in the expected frequency range in unmodified retinal (Figure 5A), at 1198 and $1215 \mathrm{~cm}^{-1}$, corresponding to an intense line and a weaker shoulder in the Raman spectrum. These lines can be assigned to the $\mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches on the basis of their sensitivity to deuteration. Both of these stretches are calculated to couple only slightly with the $\mathrm{C}_{11} \mathrm{H}$ rock (Table VI), in agreement with the observation that the $1197-\mathrm{cm}^{-1}$ line shifts up by only $7 \mathrm{~cm}^{-1}$ in the $11-\mathrm{D}$ derivative, while the $1215-\mathrm{cm}^{-1}$ line is unshifted (Figure 5C). In [12-D]- and [11,12-D ${ }_{2}$]retinal (Figure 5D,E) the $1197-\mathrm{cm}^{-1}$ line vanishes, and an intense Raman line appears at $1233 \mathrm{~cm}^{-1}$, while a weak Raman line remains at 1213 cm^{-1}. The $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch is calculated to be moderately coupled with the $\mathrm{C}_{12} \mathrm{H}$ rock, and to shift up from 1214 to $1229 \mathrm{~cm}^{-1}$ when C_{12} is deuterated. The simplest interpretation is that the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch appears at $1197 \mathrm{~cm}^{-1}$ in unmodified retinal and shifts to $1233 \mathrm{~cm}^{-1}$ in the $12-\mathrm{D}$ and $11,12-\mathrm{D}_{2}$ derivatives, retaining its Raman intensity. The $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch, which should couple less strongly with the $\mathrm{C}_{12} \mathrm{H}$ rock, can then be assigned to the weak Raman line at $1213 \mathrm{~cm}^{-1}$ in these derivatives. In the 10-D and $10,11-\mathrm{D}_{2}$ derivatives, moderately intense IR and Raman lines are observed at $\sim 1210 \mathrm{~cm}^{-1}$, while Raman intensity migrates up to $\sim 1280 \mathrm{~cm}^{-1}$ (10-D) or to $1302 \mathrm{~cm}^{-1}\left(10,11-\mathrm{D}_{2}\right)$. The $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch is calculated to be strongly coupled with the $\mathrm{C}_{10} \mathrm{H}$ rock, and to shift up to $\sim 1290 \mathrm{~cm}^{-1}$ in $10-\mathrm{D}$ and $10,11-\mathrm{D}_{2}$, where it mixes with the remaining hydrogen rocks. These rocks could then borrow intensity from the shifted $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch, contributing to the general increase in Raman intensity in this region. The residual line at $1209 \mathrm{~cm}^{-1}$ in the $10-\mathrm{D}$ derivative and at $1212 \mathrm{~cm}^{-1}$ in $10,11-D_{2}$ can then confidently be assigned to the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch.

Comparison with the calculated frequencies in Table VI shows that the above assignments are in reasonable agreement with the calculations. However, the calculation places the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch at lower frequency than the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch in the unmodified compound. This calculated ordering is insensitive to the choice of force constants within reasonable limits, and we were unable to reverse the calculated assignments without introducing substantial errors in the deuterium shifts. It is, therefore, also possible that in unmodified retinal the suggested assignment should be reversed, placing the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch at $1197 \mathrm{~cm}^{-1}$ and the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch at $1215 \mathrm{~cm}^{-1}$. In this case, changes in the mixing between these two stretches, in either the ground state or the excited state, could account for the variations in relative PRR intensity in the deuterated derivatives. The calculated mixing of these stretches to form a symmetric combination at $1229 \mathrm{~cm}^{-1}$, for example, could explain the large Raman intensity of the $1234-\mathrm{cm}^{-1}$ line in the 12-D derivative.

The 9 - and 13-demethyl derivatives in Figures 3 and 4 further demonstrate the effect of the methyl groups on the $\mathrm{C}-\mathrm{C}$ chain stretches. Removal of either CH_{3} group causes a downshift of the adjacent $\mathrm{C}-\mathrm{C}$ stretch (because it is no longer coupled with the $\mathrm{C}-\mathrm{CH}_{3}$ stretch), which then can interact more strongly with the conjugated $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch at $1163 \mathrm{~cm}^{-1}$. This interaction causes the symmetric combination of the adjacent $\mathrm{C}-\mathrm{C}$ stretches to shift downward and increase in intensity (Tables III, IV). In the 9 -demethyl derivative, the intense $1197-\mathrm{cm}^{-1}$ line disappears, while a line remains at $1214 \mathrm{~cm}^{-1}$. Our calculations predict the

Table VI. Frequencies and Assignments of the Retinal Fingerprint

	obsd	calcd	description ${ }^{\text {a }}$		obsd	calcd	description ${ }^{\text {a }}$
unmodified	1334	1377	$0.40(10 \mathrm{H})-0.55(15 \mathrm{H})-0.33(12 \mathrm{H})+$ $\mathrm{CH}_{3} \text { sym def }$	12-D	1234	1229	$\begin{gathered} 0.17(12-13)+0.11(8-9)+ \\ 0.47(10 \mathrm{H})+0.42(14 \mathrm{H}) \end{gathered}$
		1360	$\begin{aligned} & 0.81(15 \mathrm{H})+0.54(10 \mathrm{H})+0.14(9- \\ & \left.\mathrm{CH}_{3}\right) \end{aligned}$		1213	1208	$\begin{gathered} 0.10(8-9)-0.16(12-13)+ \\ 0.57(10 \mathrm{H})-0.44(14 \mathrm{H}) \end{gathered}$
		1339	$0.79(14 \mathrm{H})+0.56(15 \mathrm{H})+0.12(12-$		1178	1181	$0.23(10-11)+0.10(6-7)$
			13) $-0.20\left(13-\mathrm{CH}_{3}\right)$		1164	1165	0.16(10-11)-0.12(6-7)
		1312	$0.52(8 \mathrm{H})+0.45(11 \mathrm{H})+0.22(8-9)-$		1118	1119	0.33(14-15)
			$0.16\left(9-\mathrm{CH}_{3}\right)-0.11(6-7)$		972	980	$0.54(12 \mathrm{D})+0.16\left(13-\mathrm{CH}_{3}\right)$
		1287	$0.933(7 \mathrm{H})-0.30(8 \mathrm{H})+0.17(7=8)$	11,12-D ${ }_{2}$			
	1279	1280	$0.63(12 \mathrm{H})-0.48(11 \mathrm{H})+0.16(11=12)$			$\begin{aligned} & 1370 \\ & 1360 \end{aligned}$	$0.56(10 \mathrm{H})+0.78(15 \mathrm{H})+0.14(9-$
	1270	1261	$\begin{aligned} & 0.67(11 \mathrm{H})-0.59(8 \mathrm{H})+0.47(12 \mathrm{H})+ \\ & 0.13(12-13) \end{aligned}$				$\left.0.8 \mathrm{CH}_{3}\right)$ $0.89 \mathrm{H})+0.40(15 \mathrm{H})+$
	1215	1214	$\begin{aligned} & 0.21(12-13)-0.10(10-11)+ \\ & 0.65(14 \mathrm{H})+0.28(12 \mathrm{H})-0.11(13- \end{aligned}$		1330	1328	$\begin{aligned} & 0.89(14 \mathrm{H})+0.40(15 \mathrm{H})+ \\ & 0.12(13=14)+0.12(12-13)- \\ & 0.23\left(13-\mathrm{CH}_{3}\right) \end{aligned}$
	1197	1203	$\begin{gathered} 0.15(8-9)+0.61(10 \mathrm{H})+0.50(8 \mathrm{H})+ \\ 0.43(11 \mathrm{H})+0.37(12 \mathrm{H}) \end{gathered}$		1312	1305	$\begin{aligned} & 0.62(8 \mathrm{H})+0.23(8-9)-0.13(6-7)- \\ & 0.17\left(9-\mathrm{CH}_{3}\right) \end{aligned}$
	1174	1173	$\begin{aligned} & 0.11(6-7)+0.18(10-11)+ \\ & 0.36(10 \mathrm{H}) \end{aligned}$		1233	1287	$\begin{aligned} & 0.97(7 \mathrm{H})+0.17(7=8) \\ & 0.19(12-13)+0.11(8-9)+ \end{aligned}$
	1163	1164	$\begin{aligned} & 0.22(10-11)-0.10(6-7)+ \\ & 0.23(11 \mathrm{H}) \end{aligned}$		1213	1208	$\begin{gathered} 0.59(8 \mathrm{H})+0.37(14 \mathrm{H}) \\ 0.11(8-9)-0.15(12-13)+ \end{gathered}$
	1111	1115	0.33(14-15)		1178	1182	$0.59(10 \mathrm{H})-0.42(14 \mathrm{H})$ $0.25(10-11)+0.34(10 \mathrm{H})$
10-D		1372	$0.91(15 \mathrm{H})+0.33(12 \mathrm{H})-0.33(14 \mathrm{H})$		1171	1170	0.15(6-7)
	1334	1342	$0.78(14 \mathrm{H})+0.70(15 \mathrm{H})-0.37(12 \mathrm{H})+$		1114	1118	0.32(14-15)
			$0.10(12-13)-0.17\left(13-\mathrm{CH}_{3}\right)$		971	981	$0.60(12 \mathrm{D})+0.32(11 \mathrm{D})+0.15(13-$
		1322	$\begin{aligned} & 0.69(8 \mathrm{H})+0.45(7 \mathrm{H})+0.14(10-11)- \\ & 0.10(12-13)+0.11\left(13-\mathrm{CH}_{3}\right) \end{aligned}$		965	956	$\begin{gathered} \left.\mathrm{CH}_{3}\right) \\ 0.78(11 \mathrm{D})+0.07(10-11) \end{gathered}$
	1286	$\begin{aligned} & 1305 \\ & 1286 \end{aligned}$	$0.27(8-9)-0.25\left(9-\mathrm{CH}_{3}\right)$	10,11-D ${ }_{2}$			
			$\begin{aligned} & 0.89(7 \mathrm{H})-0.35(8 \mathrm{H})+0.17(7=8)+ \\ & 0.10(8-9) \end{aligned}$		1333	$\begin{aligned} & 1369 \\ & 1339 \end{aligned}$	$\begin{aligned} & 0.97(15 \mathrm{H})+0.10(13=14) \\ & 0.83(14 \mathrm{H})+0.61(15 \mathrm{H})+ \end{aligned}$
	1280	1275	$\begin{aligned} & 0.59(12 \mathrm{H})-0.56(11 \mathrm{H})+ \\ & 0.17(11=12) \end{aligned}$			1317	$\begin{aligned} & 0.12(12-13)-0.19\left(13-\mathrm{CH}_{3}\right) \\ & 0.74(8 \mathrm{H})+0.52(7 \mathrm{H})+ \end{aligned}$
	1271	1259	$\begin{aligned} & 0.62(11 \mathrm{H})+0.62(12 \mathrm{H})-0.45(8 \mathrm{H})+ \\ & 0.15(12-13)-0.12\left(13-\mathrm{CH}_{3}\right) \end{aligned}$		1302	1303	$\begin{gathered} 0.15(10-11)+0.10(6-7) \\ 0.26(8-9)+0.10(9=10)+0.37(8 \mathrm{H})- \end{gathered}$
	1209	1212	$0.19(12-13)+0.65(14 \mathrm{H})+$		1288	1286	$\begin{aligned} & 0.23\left(9-\mathrm{CH}_{3}\right) \\ & 0.90(7 \mathrm{H})+0.10(8-9)-0.17(7=8) \end{aligned}$
	1174	1180	$0.12(6-7)+0.16(10-11)+0.46(8 \mathrm{H})$		1258	1259	$0.85(12 \mathrm{H})+0.13(11=12)+$
	1161	1163	$0.19(10-11)-0.12(6-7)+0.30(111 \mathrm{f})$				0.13(12-13)-0.12(13-CH3)
	1108	1115	0.33(14-15)		1212	1221	$0.18(12-13)-0.13(10-11)+$
	956	956	$0.50(10 \mathrm{D})+0.12(8-9)$			118	$0.51(14 \mathrm{H})$
11-D		1376	$0.48(10 \mathrm{H})-0.58(15 \mathrm{H})-0.32(12 \mathrm{H})+$				$0.43(12 \mathrm{H})-0.41(8 \mathrm{H})$
			CH_{3} sym def		1171	1171	0.15(6-7)
		1360	$0.84(15 \mathrm{H})+0.52(10 \mathrm{H})+0.13(9-$		1108	1115	0.33(14-15)
			CH_{3})		965	959	$0.36(10 \mathrm{D})+0.58(11 \mathrm{D})+0.10(8-9)$
	1334	1337	$\begin{aligned} & 0.82(14 \mathrm{H})+0.50(15 \mathrm{H})+ \\ & 0.14(12-13)-0.21\left(13-\mathrm{CH}_{3}\right) \end{aligned}$		957	949	$\begin{aligned} & 0.55(11 \mathrm{D})-0.35(10 \mathrm{D})+ \\ & 0.10(10-11) \end{aligned}$
	1308	1305	$\begin{aligned} & 0.61(8 \mathrm{H})+0.23(8-9)-0.13(6-7)- \\ & 0.18\left(9-\mathrm{CH}_{3}\right) \end{aligned}$	15-D		1372	$0.64(10 \mathrm{H})-0.37(12 \mathrm{H})+0.39(14 \mathrm{H})+$
	1290	1287	$0.96(7 \mathrm{H})+0.17(7=8)$				${ }_{0}^{0.11\left(9-\mathrm{CH}_{3}\right)} \mathrm{F}$ (14H)-0.32(10H)-0.34(12H)+
	1260	1264	$0.79(12 \mathrm{H})+0.12(11=12)-0.40(8 \mathrm{H})$		1346	1344	$0.75(14 \mathrm{H})-0.32(10 \mathrm{H})-0.34(12 \mathrm{H})+$ $0.10(13=14)+0.10(12-13)-$
	1215	1223	$\begin{aligned} & 0.17(12-13)-0.14(10-11)+ \\ & 0.47(14 \mathrm{H})+0.41(8 \mathrm{H})+0.37(12 \mathrm{H}) \end{aligned}$				$0.20\left(13-\mathrm{CH}_{3}\right)$
	1204	1209	$\begin{gathered} 0.13(8-9)-0.14(12-13)+ \\ 0.55(10 \mathrm{H})+0.44(8 \mathrm{H}) \end{gathered}$			1312	$\begin{aligned} & 0.51(8 \mathrm{H})+0.44(11 \mathrm{H})+0.22(8-9)- \\ & 0.11(6-7)-0.16\left(9-\mathrm{CH}_{3}\right) \end{aligned}$
	1171	1172	$0.25(10-11)+0.47(10 \mathrm{H})$			1287	$0.93(7 \mathrm{H})+0.17(7=8)$
		1171	0.17(6-7)		1281	1280	$0.64(12 \mathrm{H})-0.47(11 \mathrm{H})+$
	1109	1115	0.33(14-15)				$0.16(11=12)$ $0.66(11 \mathrm{H})-0.59(8 \mathrm{H})+0.43(12 \mathrm{H})+$
	966	959	$0.81(11 \mathrm{D})+0.07(10-11)$		1270	1262	$\begin{aligned} & 0.66(11 \mathrm{H})-0.59(8 \mathrm{H})+0.43(12 \mathrm{H})+ \\ & 0.14(12-13) \end{aligned}$
12-D		1371	$0.74(15 \mathrm{H})-0.46(10 \mathrm{H})$		1213	1218	$0.21(12-13)-0.10(10-11)+$
		1360	$0.57(10 \mathrm{H})+0.76(15 \mathrm{H})-0.34(8 \mathrm{H})+$				$0.58(14 \mathrm{H})-0.11\left(13-\mathrm{CH}_{3}\right)$
			$0.14\left(9-\mathrm{CH}_{3}\right)$		1197	1203	$0.15(8-9)+0.60(10 \mathrm{H})+$
	1330	1330	$0.87(14 \mathrm{H})+0.44(15 \mathrm{H})+$				$0.44(11 \mathrm{H})+0.38(12 \mathrm{H})+0.50(8 \mathrm{H})$
			$\begin{aligned} & 0.10(13=14)+0.10(12-13)- \\ & 0.22\left(13-\mathrm{CH}_{3}\right) \end{aligned}$			1173	$\begin{aligned} & 0.11(6-7)+0.18(10-11)+ \\ & 0.35(10 \mathrm{H}) \end{aligned}$
		1311	$\begin{aligned} & 0.52(8 \mathrm{H})+0.40(11 \mathrm{H})+0.22(8-9)- \\ & 0.11(6-7)-0.16\left(9-\mathrm{CH}_{3}\right) \end{aligned}$		1166	1164	$\begin{aligned} & 0.22(10-11)-0.10(6-7)+ \\ & 0.23(11 \mathrm{H}) \end{aligned}$
	1282	1287	$0.94(7 \mathrm{H})+0.17(7=8)$		1149	1145	$0.30(14-15)+0.53(15 \mathrm{D})$
	1275	1263	$\begin{aligned} & 0.85(11 \mathrm{H})-0.49(8 \mathrm{H})-0.35(7 \mathrm{H})+ \\ & 0.10(11=12) \end{aligned}$		999	991	$0.78(15 \mathrm{D})+0.13(14-15)$

${ }^{a}$ All internal coordinates contributing $>10 \%$ to the potential energy of the normal mode are included. Coefficients of CC stretches, because of their greater reduced mass, are $\sim 1 / \sqrt{6}$ of CCH rocking coefficients having comparable potential energy contributions.
downshift of the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch in 9 -demethylretinal, where it mixes with the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch to produce modes at 1141 and $1161 \mathrm{~cm}^{-1}$, with the symmetric combination at the lower frequency. These correspond to the observed lines at 1149 and $1172 \mathrm{~cm}^{-1}$ in Figure 3. The $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch is calculated to shift only slightly, and can be assigned to the $1214-\mathrm{cm}^{-1}$ line. In the 13 -demethyl derivative (Table IV) the symmetric and asymmetric combinations of the $\mathrm{C}_{10}-\mathrm{C}_{11}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches are calculated to lie at 1141 and $1176 \mathrm{~cm}^{-1}$, respectively. We therefore assign the observed 1157- and $1186-\mathrm{cm}^{-1}$ lines of 13 -demethylretinal to the mixed $\mathrm{C}_{12}-\mathrm{C}_{13}$ and $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretches. The $1222-\mathrm{cm}^{-1}$ line is best assigned to the residual $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch. Removal of both chain methyl groups causes a collapse of the fingerprint intensity into a single intense line at $1148 \mathrm{~cm}^{-1}$ (in trans-didemethylretinoic acid ${ }^{41}$) characteristic of unsubstituted polyenes.

The $\mathrm{C}-\mathrm{C}$ stretch α to the $\mathrm{C}=\mathrm{O}$ group appears only weakly in the Raman spectra of model conjugated aldehydes, but it absorbs strongly in the IR. Although this stretch appears at 1152 cm^{-1} in neat crotonaldehyde, it drops to $1123 \mathrm{~cm}^{-1}$ in sorbaldehyde, where it gives a strong IR band which shifts to $1151 \mathrm{~cm}^{-1}$ in [1-D]sorbaldehyde. ${ }^{23}$ We therefore expect the corresponding stretch in retinal to appear at lower frequency than the intense $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch, to be readily observed in the IR spectrum but weak in the Raman spectrum, and to be sensitive to deuteration at C_{15}. The $1111-\mathrm{cm}^{-1}$ band in our retinal IR spectra is insensitive to $10-\mathrm{D}$ or 11-D substitution, but increases to $1118 \mathrm{~cm}^{-1}$ in 12-D, and to $1149 \mathrm{~cm}^{-1}$ in 15-D (Figures 2,5). The $1111-\mathrm{cm}^{-1}$ IR line can therefore be assigned to the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch. A small degree of coupling between this stretch and the nearby $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch at $1163 \mathrm{~cm}^{-1}$ would then be responsible for the $\sim 3 \mathrm{~cm}^{-1}$ upshift of the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch in [15-D]retinal. The considerable reduction of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ force constant below that of the other single bonds (Table I), which was required in order to fit this frequency in the calculations, is consistent with the lower π-bond order of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ bond predicted in QCFF- π calculations of retinal. This assignment was also suggested by Cookingham et al., ${ }^{86}$ who observed a line near $1111 \mathrm{~cm}^{-1}$ in the 9 -cis, 11 -cis, and 13 -cis isomers of retinal whose intensity increases as the cis bend approaches the CHO terminal group.

Finally, we attribute the $1174-\mathrm{cm}^{-1}$ shoulder in the all-transretinal spectrum to the remaining conjugated $\mathrm{C}_{6}-\mathrm{C}_{7}$ single bond stretch, because it increases dramatically in Raman intensity in 3,4-dehydroretinal. ${ }^{86}$ Such an increase of Raman intensity is expected as a result of the extension of the conjugated π system into the ring. The remaining IR lines at 1123 and $1134 \mathrm{~cm}^{-1}$ are attributed to vibrations of the β-ionyl ring, as discussed below.

Fingerprint CCH Bends. Vinyl deuteration of the retinal chain will cause the corresponding CCH bend (or "rock") to shift out of the fingerprint region. Thus the $1270-\mathrm{cm}^{-1}$ line of unmodified retinal consists largely of $\mathrm{C}_{11} \mathrm{H}$ rocking motion, since this line vanishes whenever the 11 position is deuterated (11-D, $10,11-D_{2}$, $11,12-\mathrm{D}_{2}$). No major lines above $1200 \mathrm{~cm}^{-1}$ are observed to vanish in the $10-\mathrm{D}, 12-\mathrm{D}$, or $15-\mathrm{D}$ derivatives, which indicates that the normal modes which have predominantly $\mathrm{C}_{10} \mathrm{H}, \mathrm{C}_{12} \mathrm{H}$, and $\mathrm{C}_{15} \mathrm{H}$ character do not have much intensity. The direction of the shifts of other fingerprint lines in these derivatives, however, can be used to deduce an allowable frequency range for the unsubstituted weak vibrations, when it is recognized that coupling of these vibrations causes the coupled normal modes to split apart. The $1334-\mathrm{cm}^{-1}$ line, for example, is unaffected by $10-\mathrm{D}$ or $11-\mathrm{D}$ substitution (Figure 5B,C,F) but shifts down to $1330 \mathrm{~cm}^{-1}$ in 12-D and up to $1346 \mathrm{~cm}^{-1}$ in [15-D]retinal. This suggests that this line can be assigned to the $\mathrm{C}_{14} \mathrm{H}$ rock, which is calculated to be mixed with the $\mathrm{C}_{15} \mathrm{H}$ rock and more weakly with the $\mathrm{C}_{12} \mathrm{H}$ rock. The fact that it shifts u in 15-D and down in 12-D indicates that the unseen $\mathrm{C}_{15} \mathrm{H}$ rock is at higher frequency, and the $\mathrm{C}_{12} \mathrm{H}$ rock at lower frequency, than $1334 \mathrm{~cm}^{-1}$. The high frequency of the $\mathrm{C}_{14} \mathrm{H}$ rock can be attributed to coupling with the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch and with the $\mathrm{C}_{13}-\mathrm{CH}_{3}$ stretch, as predicted by the calculations (Table VI). Mixing with the $\mathrm{C}_{13}=\mathrm{C}_{14}$ stretch may also contribute Raman
intensity to this mode. The disappearance of this line in 13-demethylretinal (Figure 4) is then naturally attributable to the removal of the $\mathrm{C}_{13}-\mathrm{CH}_{3}$ stretch interaction, and the resulting drop of the $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch frequency. The upshift of the intense $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretch to $1234 \mathrm{~cm}^{-1}$ in [12-D] retinal (Figure 5D) shows both that this stretch contains a significant contribution from the $\mathrm{C}_{12} \mathrm{H}$ rocking motion, and also that the unseen $\mathrm{C}_{12} \mathrm{H}$ rock is above $1234 \mathrm{~cm}^{-1}$ in unmodified retinal. The $\mathrm{C}_{12} \mathrm{H}$ rocking mode, although it cannot be assigned to any observed vibration, can thus nonetheless be confidently placed between 1234 and $1330 \mathrm{~cm}^{-1}$. One possibility consistent with our calculations is that the $\mathrm{C}_{12} \mathrm{H}$ rock lies at $1279 \mathrm{~cm}^{-1}$ in the unmodified retinal spectrum, where it derives intensity by mixing with the $\mathrm{C}_{11} \mathrm{H}$ rock at $1270 \mathrm{~cm}^{-1}$, and with the $\mathrm{C}_{11}=\mathrm{C}_{12}$ stretch.

Our calculations predict the $\mathrm{C}_{10} \mathrm{H}$ rock, which is similar to the $\mathrm{C}_{14} \mathrm{H}$ rock in being trans to a methyl group, to lie slightly above the $\mathrm{C}_{14} \mathrm{H}$ rock at $1334 \mathrm{~cm}^{-1}$. No lines in this region of the $10-\mathrm{D}$ and $10,11-\mathrm{D}_{2}$ derivatives are observed to vanish (Figure 2B,F). The shift of the $\mathrm{C}_{8}-\mathrm{C}_{9}$ stretch to $\sim 1280 \mathrm{~cm}^{-1}$ in 10-D, however, confirms that the unseen $\mathrm{C}_{10} \mathrm{H}$ rock of unmodified retinal lies at least above $1280 \mathrm{~cm}^{-1}$.

When deuterium is substituted for hydrogen, the corresponding rock is shifted out of the fingerprint region to near $970 \mathrm{~cm}^{-1}$, where it appears largely unmixed with other rocking vibrations. The strong new Raman lines appearing at $956 \mathrm{~cm}^{-1}$ in the $10-\mathrm{D}$, at $966 \mathrm{~cm}^{-1}$ in the 11-D, and at $972 \mathrm{~cm}^{-1}$ in the 12-D derivative (Figure 5B-F) must represent these deuterium rocks, which derive Raman intensity by mixing with $\mathrm{C}-\mathrm{C}$ stretches. These rocks apparently do not couple with each other when they are deuterated, since they appear as unsplit degenerate lines in the $10,11-\mathrm{D}_{2}$ and $11,12-\mathrm{D}_{2}$ derivatives. The new intense IR band at $999 \mathrm{~cm}^{-1}$ in [15-D]retinal (Figure 2) is similarly assigned to the $\mathrm{C}_{15} \mathrm{D}$ rock, which borrows intensity through mixing with the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch. The high frequency of this line is consistent with the placement of the $\mathrm{C}_{15} \mathrm{H}$ rock near $1360 \mathrm{~cm}^{-1}$ in unmodified retinal.

Methyl Group Vibrations

Besides their profound effects on the retinal fingerprint, the chain methyl groups contribute their own group vibrations to the retinal spectra. The HCH bending vibrations form three combinations, a symmetric and two degenerate asymmetric deformations, which give reliable IR group frequencies at ~ 1380 and $\sim 1445 \mathrm{~cm}^{-1}$, respectively, corresponding to weak Raman lines. ${ }^{34}$ The "in-plane" CCH methyl rock appears in model compounds between 1000 and $1100 \mathrm{~cm}^{-1}$, weakly in the IR and with variable Raman intensity, while the "out-of-plane" methyl rock, which is not coupled with fingerprint vibrations, appears at a slightly higher frequency. ${ }^{34}$ The $\mathrm{C}-\mathrm{CH}_{3}$ methyl stretching mode is quite variable in both frequency and intensity, because of its strong interaction with CC stretches and CCH rocks involving motion of the methyl-substituted carbon atom. Lines from $800 \mathrm{~cm}^{-1}$ in isobutene ${ }^{42}$ to $953 \mathrm{~cm}^{-1}$ in isoprene ${ }^{21}$ have been assigned to this vibrational mode.

The amorphous band near $1446 \mathrm{~cm}^{-1}$ in the IR spectrum therefore includes contributions from the HCH deformations of all five CH_{3} groups, as well as CH_{2} scissors vibrations of the ring, which also have characteristic IR frequencies in this region. ${ }^{34}$ The $1360-, 1385-\mathrm{cm}^{-1}$ IR doublet is characteristic of gem-dimethyl symmetric deformations, and was thus attributed to the methyl groups on $\mathrm{C}_{1} .{ }^{8 b}$ The remaining IR intensity near $1385 \mathrm{~cm}^{-1}$ and the majority of the Raman intensity near $1389 \mathrm{~cm}^{-1}$ is then probably due to symmetric deformations of the three CH_{3} groups attached to the conjugated chain. These vibrations are calculated to appear at $\sim 1385 \mathrm{~cm}^{-1}$, and are expected to exhibit greater Raman intensity than deformations of methyl groups attached to the ring.

The strong $1008-\mathrm{cm}^{-1}$ Raman line clearly represents a coupled vibration involving motion of both chain methyl groups, since it shifts upward by $7-10 \mathrm{~cm}^{-1}$ in $\left[19-\mathrm{CD}_{3}\right]$ retinal and in both $9-$ and 13-demethylretinal (Figures 3, 4, 6). The fact that modifications
of either methyl group shift this line upward by an approximately equal amount implies that the uncoupled CH_{3} vibrations are nearly degenerate at $\sim 1016 \mathrm{~cm}^{-1}$ and that they couple to form normal modes that are split apart by $\sim 8 \mathrm{~cm}^{-1}$. Because the $1008-\mathrm{cm}^{-1}$ line exhibits nearly all of the Raman intensity, it must represent the symmetric combination of the two methyl modes. The antisymmetric combination would then lie near $1024 \mathrm{~cm}^{-1}$, with nearly zero intensity. These arguments apply with equal validity whether the coupled vibrations are methyl stretches or methyl rocks.

The large Raman intensity of the $1008-\mathrm{cm}^{-1}$ line is apparently due to mixing with the $\mathrm{C}-\mathrm{C}$ stretches of the conjugated chain. The $\mathrm{C}-\mathrm{CH}_{3}$ stretches and CH_{3} rocks themselves are expected to participate only slightly in the resonant $\pi-\pi^{*}$ electronic transition and will therefore have little intrinsic PRR intensity. This requirement that the vibration responsible for the $1008-\mathrm{cm}^{-1}$ line be mixed with $\mathrm{C}-\mathrm{C}$ stretches precludes this mode being the out-of-plane methyl rock, which could not mix effectively with chain stretches. It must therefore be an in-phase combination of either the $\mathrm{C}-\mathrm{CH}_{3}$ stretches or the CH_{3} in-plane rocks of the two chain methyl groups.

Comparison of our deuterated retinal spectra (Figure 1) with the calculated CH_{3} vibrational frequencies (Table VII) strongly suggests that the $1008-\mathrm{cm}^{-1}$ line is the methyl rock. First, this frequency is more consistent with a methyl rock assignment. The $\mathrm{C}-\mathrm{CH}_{3}$ stretches of model compounds lie between 800 and 960 cm^{-1} (e.g., $953 \mathrm{~cm}^{-1}$ in isoprene), while CH_{3} rocks have been assigned from $963 \mathrm{~cm}^{-1}$ in propylene to as high as $1146 \mathrm{~cm}^{-1}$ in trans-butene. ${ }^{21,22.34}$ Second, our force constant set consistently places the methyl stretches $50-100 \mathrm{~cm}^{-1}$ below the methyl rocks, while correctly reproducing the interactions of the methyl stretches with the chain $\mathrm{C}-\mathrm{C}$ stretches and CCH rocks. Third, when the chain carbons adjacent to the methyl groups are deuterated, the $\mathrm{C}-\mathrm{CH}_{3}$ stretches are calculated to couple kinetically much more strongly with the CCD vinyl bends than are the methyl rocks. For example, the $\mathrm{C}_{9}-\mathrm{CH}_{3}$ and $\mathrm{C}_{13}-\mathrm{CH}_{3}$ stretches are calculated to shift from 888 and $871 \mathrm{~cm}^{-1}$ to 884 and $825 \mathrm{~cm}^{-1}$ when C_{12} is deuterated. These shifts are even greater when the calculated methyl stretch frequencies are forced to be closer to that of the $\mathrm{C}_{12} \mathrm{D}$ (e.g., at $1008 \mathrm{~cm}^{-1}$). Although the antisymmetric combination of the two rocks is also calculated to shift up by $\sim 10 \mathrm{~cm}^{-1}$ in the 12-D derivative, the lower frequency combination shifts up by no more than $3 \mathrm{~cm}^{-1}$, and should retain its Raman intensity (Table VII). The remarkable constancy of the $1008-\mathrm{cm}^{-1}$ line not only in our vinyl-deuterated derivatives, but also in other retinal isomers, ${ }^{8 \mathrm{bb}}$ in their PSB's, ${ }^{5 \mathrm{a}}$ in the retinal-containing pigments, ${ }^{4}$ and in other carotenoids ${ }^{43}$ seems therefore inconsistent with a methyl stretch assignment. The methyl rock, on the other hand, is calculated to be much more localized, and is thus expected to be much less sensitive to the configuration and environment of the molecule.

The $\mathrm{C}-\mathrm{CH}_{3}$ stretches cannot lie near $960 \mathrm{~cm}^{-1}$ submerged beneath the A_{u} HOOPs, or they would be observed to couple strongly with the adjacent vinyl deuterated rocks, producing a split pair of lines centered near $960 \mathrm{~cm}^{-1}$. Yet the $\mathrm{C}_{10} \mathrm{D}$ and $\mathrm{C}_{12} \mathrm{D}$ rocks appear at 956 and $972 \mathrm{~cm}^{-1}$, nearly identical with the $\mathrm{C}_{11} \mathrm{D}$ rock ($966 \mathrm{~cm}^{-1}$) which is unperturbed by $\mathrm{C}-\mathrm{CH}_{3}$ stretches. Nor can the $\mathrm{C}-\mathrm{CH}_{3}$ stretches lie between 890 and $950 \mathrm{~cm}^{-1}$, since there are no Raman lines in this region, and it is improbable that the intensity of the methyl stretches is zero. It therefore appears likely that these stretches contribute to the cluster of weak Raman lines between 849 and $890 \mathrm{~cm}^{-1}$ (Figure 1A), which is well within the normal range of such vibrations in model molecules. In [10D]retinal, Raman intensity is lost in the $866^{-890}-\mathrm{cm}^{-1}$ region, apparently shifting to $853 \mathrm{~cm}^{-1}$, and in [12-D]retinal the $866-\mathrm{cm}^{-1}$ line apparently shifts to 835 or $817 \mathrm{~cm}^{-1}$ (Figure 1B,D). These shifts agree well with the calculated shifts of $\mathrm{C}-\mathrm{CH}_{3}$ stretches in these derivatives.

The Raman spectrum of $\left[19-\mathrm{CD}_{3}\right]$ retinal (Figure 6) is consistent with these assignments. The new line appearing at $1079 \mathrm{~cm}^{-1}$ is assigned to the $\mathrm{C}_{19} \mathrm{D}_{3}$ symmetric deformation shifted down from
(43) Gill, D.; Kilponen, R. G.; Rimai, L. Nature (London) 1970, 227, 743.

Table VII. Calculated Frequencies and Assignments of CH_{3} Group Vibrations of Retinal ${ }^{\text {a }}$

	obsd	calcd	description
unmodified	1446	1448	$\left(20 \mathrm{CH}_{3}\right)$ in -plane def
		1448	$\left(19 \mathrm{CH}_{3}\right)$ in n -plane def
		1446	$\left(19 \mathrm{CH}_{3}\right)$ out-of-plane def
		1445	$\left(20 \mathrm{CH}_{3}\right)$ out-of-plane def
	1389	1388	$\left(19 \mathrm{CH}_{3}\right)$ symmetric def
		1382	$\left(20 \mathrm{CH}_{3}\right)$ symmetric def
		1084	$0.64\left(19 \mathrm{CH}_{3}\right.$ or $)+0.56\left(20 \mathrm{CH}_{3}\right.$ or $)$
		1084	$0.57\left(19 \mathrm{CH}_{3}\right.$ or $)-0.63\left(20 \mathrm{CH}_{3}\right.$ or $)$
		1022	$\begin{aligned} & 0.55\left(19 \mathrm{CH}_{3} \mathrm{r}\right)-0.42\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.10(8-9)-0.08(12-13) \end{aligned}$
	1008	1015	$\begin{aligned} & 0.54\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+0.43\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.08(8-9)+0.12(12-13) \end{aligned}$
		888	$0.21\left(9-\mathrm{CH}_{3}\right)+0.12\left(13-\mathrm{CH}_{3}\right)$
	866	871	$0.22\left(13-\mathrm{CH}_{3}\right)-0.10\left(9-\mathrm{CH}_{3}\right)$
10-D	1042	1039	$\begin{aligned} & 0.60\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+0.36(10 \mathrm{D})- \\ & 0.21\left(20 \mathrm{CH}_{3} \mathrm{r}\right) \end{aligned}$
	1008	1016	$\begin{aligned} & 0.64\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+0.26\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.14(12-13) \end{aligned}$
		873	$0.25\left(13-\mathrm{CH}_{3}\right)$
	853	839	$0.20\left(9-\mathrm{CH}_{3}\right)+0.47(10 \mathrm{D})$
11-D		1023	$\begin{aligned} & 0.56\left(20 \mathrm{CH}_{3} \mathrm{r}\right)-0.38\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.11(12-13)-0.06(8-9) \end{aligned}$
	1009	1018	$\begin{aligned} & 0.57\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+0.34\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.12(8-9)+0.07(12-13) \end{aligned}$
		888	$0.21\left(9-\mathrm{CH}_{3}\right)+0.11\left(13-\mathrm{CH}_{3}\right)$
	867	871	$0.23\left(13-\mathrm{CH}_{3}\right)-0.10\left(9-\mathrm{CH}_{3}\right)$
12-D	1037	1033	$\begin{aligned} & 0.62\left(20 \mathrm{CH}_{3} \mathrm{r}\right)-0.19\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.11(12-13)+0.44(12 \mathrm{D}) \end{aligned}$
	1007	1018	$\begin{aligned} & 0.67\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+0.21\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.12(8-9) \end{aligned}$
		884	$0.23\left(9-\mathrm{CH}_{3}\right)$
	835	825	$0.20\left(13-\mathrm{CH}_{3}\right)+0.44(12 \mathrm{D})$
11,12- D_{2}	1036	1033	$\begin{gathered} 0.63\left(20 \mathrm{CH}_{3} \mathrm{r}\right)-0.15\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ 0.11(12-13)+0.41(12 \mathrm{D}) \end{gathered}$
	1008	1019	$\begin{aligned} & 0.67\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+0.16\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.13(8-9) \end{aligned}$
		884	$0.23\left(9-\mathrm{CH}_{3}\right)$
	836	825	$0.20\left(13-\mathrm{CH}_{3}\right)+0.44(12 \mathrm{D})$
10,11-D ${ }_{2}$	1042	1038	$\begin{aligned} & 0.58\left(19 \mathrm{CH}_{3} \mathrm{r}\right)-0.27\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.36(10 \mathrm{D}) \end{aligned}$
	1008	1019	$\begin{aligned} & 0.59\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+0.32\left(19 \mathrm{CH}_{3} \mathrm{r}\right)+ \\ & 0.12(12-13) \end{aligned}$
		873	$0.25\left(13-\mathrm{CH}_{3}\right)$
	854	839	$0.20\left(9-\mathrm{CH}_{3}\right)+0.47(10 \mathrm{D})$
$19-\mathrm{CD}_{3}$	1446	1448	$\left(20 \mathrm{CH}_{3}\right)$ in-plane def
		1445	$\left(20 \mathrm{CH}_{3}\right)$ out-of-plane def
	$\begin{aligned} & 1388 \\ & 1079 \end{aligned}$	1385	$\left(20 \mathrm{CH}_{3}\right) \mathrm{sym}$ def
		1110	$\left(19 \mathrm{CD}_{3}\right)$ sym def
		1085	$0.37\left(20 \mathrm{CH}_{3}\right.$ or)
		1047	$\left(19 \mathrm{CD}_{3}\right)$ in-plane def (19CD,) out-of-plane def
	1018	1017	$0.69\left(20 \mathrm{CH}_{3} \mathrm{r}\right)+0.14(12-13)$
	907	867	$0.53\left(19 \mathrm{CD}_{3}\right.$ or)
		878	$0.24\left(13-\mathrm{CH}_{3}\right)$
	850	850	$0.53\left(19 \mathrm{CD}_{3} \mathrm{r}\right)$
	830	815	0.18 (9-CD ${ }^{\text {a }}$)

${ }^{a}$ Abbreviations used: r, in-plane methy1 rock; or, out-of-plane methy1 rock. Methy1 deformations and rocking modes were defined as in ref 22. The deformations and out-of-plane rocks were unmixed with other vibrations in the calculations, and varied in frequency by less than $1 \mathrm{~cm}^{-1}$ in any of the vinyl-deuterated derivatives.
$\sim 1390 \mathrm{~cm}^{-1}$, based on its calculated deuterium shift of $1388 \rightarrow$ $1110 \mathrm{~cm}^{-1}$ (Table VII). The shift of the $1008-\mathrm{cm}^{-1}$ line to 1018 cm^{-1} is due to the removal of one of the degenerate methyl rocks, and therefore represents the upshifted residual $\mathrm{C}_{20} \mathrm{H}_{3}$ rock. The in-plane $\mathrm{C}_{19} \mathrm{H}_{3}$ rock is calculated to shift from ~ 1015 to $850 \mathrm{~cm}^{-1}$, while the $\mathrm{C}_{9}-\mathrm{CH}_{3}$ stretch is calculated to shift from 888 to 815 cm^{-1} in the $19-\mathrm{CD}_{3}$ derivative (Table VII). Therefore, the new
moderately intense Raman line at $850 \mathrm{~cm}^{-1}$ in $19-\mathrm{CD}_{3}$ can reasonably be assigned to the in-plane rock shifted from $1008 \mathrm{~cm}^{-1}$, and the line at $830 \mathrm{~cm}^{-1}$ is attributed to the $\mathrm{C}_{9}-\mathrm{CD}_{3}$ stretch shifted down from $\sim 890 \mathrm{~cm}^{-1}$. The weak line at $907 \mathrm{~cm}^{-1}$ can be explained as the out-of-plane rock shifted from near $1085 \mathrm{~cm}^{-1}$, which derives intensity by mixing with nearby HOOP vibrations (calculated shift $1084 \rightarrow 867 \mathrm{~cm}^{-1}$). We are unable to explain the new line appearing at $709 \mathrm{~cm}^{-1}$ as either a methyl stretch or a methyl rock.

Previous workers ${ }^{8 a, 14}$ have attributed the $1008-\mathrm{cm}^{-1}$ Raman line to degenerate $\mathrm{C}-\mathrm{CH}_{3}$ stretches, although they seem not to have considered the alternative rock assignment. Since none of the earlier data included isotopic derivative spectra which could distinguish methyl rocks from methyl stretches as effectively as our spectra of deuterated retinals, we feel justified in making the above revised assignments. In 11-cis isomers the degeneracy of the methyl rocks is evidently removed, since two Raman lines are observed at 998 and $1018 \mathrm{~cm}^{-1}$ in 11-cis-retinal ${ }^{44}$ and at 1000 and $1018 \mathrm{~cm}^{-1}$ in rhodopsin. ${ }^{5}$ The $\left[19-\mathrm{CD}_{3}\right.$]rhodopsin spectra obtained by Eyring et al. ${ }^{11}$ permit us to assign the $1000-\mathrm{cm}^{-1}$ rhodopsin line to the $\mathrm{C}_{13}-\mathrm{CH}_{3}$ rock and the $1018-\mathrm{cm}^{-1}$ line to the $\mathrm{C}_{9}-\mathrm{CH}_{3}$ rock. The $\mathrm{C}_{9}-\mathrm{CH}_{3}$ rock in rhodopsin thus appears at a "normal" isolated rock frequency ($\sim 1018 \mathrm{~cm}^{-1}$), while the $\mathrm{C}_{13}-\mathrm{CH}_{3}$ rock is at lower frequency. As suggested by Callender et al., ${ }^{44}$ it is reasonable to conclude that this low rock frequency is due to steric interactions between the $\mathrm{C}_{20} \mathrm{H}_{3}$ group and the C_{10} hydrogen in an 11-cis, 12 -s-trans chromophore.

Finally, it should be noted that the absence of large changes between 1100 and $1360 \mathrm{~cm}^{-1}$ in the $19-\mathrm{CD}_{3}$ spectrum (Figure 6) demonstrates that none of the intense fingerprint lines involves significant motion of $\mathrm{C}_{19} \mathrm{H}_{3}$ hydrogens. The earlier attribution of a substantial degree of $\mathrm{C}_{19} \mathrm{H}_{3}$ rocking character to the intense $1197-\mathrm{cm}^{-1}$ line ${ }^{8 \mathrm{~b}}$ is therefore incorrect.

Ionyl Ring Vibrations

We attribute several bands in the retinal spectra to vibrations of the β-ionyl ring because of their insensitivity to chain deuteration, and because they correspond to lines in the Raman or IR spectra of β-ionone. ${ }^{8 b, 23}$ The Raman spectrum of β-ionone shows intense polarized lines at 584, 790, 1123, 1139, and 1254 cm^{-1}, and weaker lines at 1044 and $1064 \mathrm{~cm}^{-1}$. all-trans-Retinal has IR bands or weak Raman lines within $5 \mathrm{~cm}^{-1}$ of each of these frequencies which are nearly unchanged in frequency or intensity in our deuterated and demethyl derivatives. Further evidence supporting the assignment of the weak retinal Raman lines at 584 , $792,1045,1065$, and $1260 \mathrm{~cm}^{-1}$ to vibrations localized on the ring is provided by the spectra of 9 -cis-, 11-cis-, and 13-cis-retinal, ${ }^{8 \mathrm{~b}, 23}$ all of which have corresponding weak lines. The moderately intense IR absorptions near 1123 and $1134 \mathrm{~cm}^{-1}$ in all of our all-trans derivatives (Figure 2A-F) also appear in the IR spectra of other retinal isomers, and are insensitive to chain deuteration or to removal of methyl groups. We therefore also attribute these lines to ring vibrations.

Protonated Schiff Bases and Pigments

Now that we have assigned the major Raman lines and developed a force field for all-trans-retinal, it is important to discuss the changes in the vibrational spectra which would be expected for retinal-containing pigments. Schiff base formation should only moderately perturb the vibrational spectrum of retinal, since it adds no new internal coordinates and does not greatly alter the ground-state electronic structure. It is therefore not surprising that the Raman spectrum of the all-trans-retinal Schiff base ${ }^{5 \mathrm{C}}$ is very similar to that of the aldehyde. The only significant differences are the appearance of a shoulder at $1154 \mathrm{~cm}^{-1}$ and the upshift of the $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch to $1178 \mathrm{~cm}^{-1}$. These observations can be explained if Schiff base formation causes the $1111-\mathrm{cm}^{-1}$ $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch of the aldehyde to shift up to $\sim 1154 \mathrm{~cm}^{-1}$, where it mixes with the nearby $\mathrm{C}_{10}-\mathrm{C}_{11}$ stretch. The observed sensitivity of the 1154 - and $1178-\mathrm{cm}^{-1}$ lines of the Schiff base to $15-\mathrm{D}$
(44) Callender, R. H.; Doukas, A.; Crouch, R.; Nakanishi, K. Biochemistry 1976, 15, 1621.
substitution ${ }^{5 c}$ is consistent with this assignment.
Protonation of the Schiff base adds new NH rocking, wagging, and stretching coordinates, as well as significantly altering the π-electron distribution along the chain. Our QCFF- π calculations on retinal aldehydes and PSB's predict major perturbations of the $\mathrm{C}_{14} \mathrm{H}, \mathrm{C}_{15} \mathrm{H}$, and NH rocks and HOOPs and of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ and $\mathrm{C}_{15}=\mathrm{N}$ stretches, as well as reduction of the $\mathrm{C}=\mathrm{C}$ stretching frequencies. Nevertheless, the RR spectrum of all-trans-retinal PSB $^{5 a}$ is quite similar to that of the aldehyde. The 1165 - and $1198-\mathrm{cm}^{-1}$ lines of the PSB, although their relative intensities differ, correlate with the $1163-$ and $1197-\mathrm{cm}^{-1}$ lines of the aldehyde, and can thus be assigned to the $\mathrm{C}_{10}-\mathrm{C}_{11}$ and to the presumably unresolved $\mathrm{C}_{8}-\mathrm{C}_{9}$ and $\mathrm{C}_{12}-\mathrm{C}_{13}$ stretches, respectively. The $1270-\mathrm{cm}^{-1}$ line, which we have assigned to the $\mathrm{C}_{11} \mathrm{H}$ rock, appears also in the RR spectrum of the PSB, as do the $\sim 967-\mathrm{cm}^{-1}$ A_{u} HOOPs and the $1008-\mathrm{cm}^{-1} \mathrm{CH}_{3}$ rocking mode. The only major differences in the PSB spectrum ${ }^{5 a}$ are the disappearance of the $1334-\mathrm{cm}^{-1} \mathrm{C}_{14} \mathrm{H}$ rocking vibration, and the appearance of a new line at $1240 \mathrm{~cm}^{-1}$, which corresponds to the $1253-\mathrm{cm}^{-1}$ line observed in bacteriorhodopsin. ${ }^{5 c}$ This line is the only major line in the fingerprint whose frequency is sensitive to C_{15} deuteration, ${ }^{\text {sc }}$ and it is thus localized near the Schiff base. The $1240-\mathrm{cm}^{-1}$ line of all-trans-retinal PSB appears to shift to $1271 \mathrm{~cm}^{-1}$ in the $15-\mathrm{D}$ derivative, paralleling the shift of the $1253-\mathrm{cm}^{-1}$ line of bacteriorhodopsin to $1271 \mathrm{~cm}^{-1}$.sc These shifts are similar to the $37-\mathrm{cm}^{-1}$ upshift observed for the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch of the aldehyde upon 15-D substitution, and it therefore seems reasonable to suggest that the $1240-\mathrm{cm}^{-1}$ line of the PSB is predominantly the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch. The increased frequency of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch in the PSB compared to that of the aldehyde is consistent with the increased π-electron delocalization, which should increase the $\mathrm{C}_{14}-\mathrm{C}_{15}$ ground-state bond order. The fact that this line shifts up when C_{15} is deuterated demonstrates that the $\mathrm{C}_{15} \mathrm{H}$ rock of the PSB is above $1240 \mathrm{~cm}^{-1}$. Also, as has been discussed by Stockburger, the sensitivity of the $1240-\mathrm{cm}^{-1}$ line to $15-\mathrm{D}$ substitution indicates that the $\mathrm{C}_{14}-\mathrm{C}_{15}$ stretch must be strongly coupled with the $\mathrm{C}_{15} \mathrm{H}$ rock. ${ }^{45,46}$

Correlations of pigment spectra with aldehyde spectra can be made quantitative by refining the molecular force field to fit observed spectra of pigment derivatives. We have previously carried out such an analysis of the HOOP vibrations of the primary visual photoproduct, bathorhodopsin. ${ }^{13}$ The changes in the out-of-plane force constants which were required to reproduce the frequencies of deuterated derivatives of bathorhodopsin provided evidence for localized interactions between opsin and the chromophore. A similar analysis of the conformationally sensitive skeletal vibrations of rhodopsin and bacteriorhodopsin should furnish even more specific information about chromophore-protein interactions that are important for the function of these pigments.
Acknowledgment. We wish to thank I. Palings and R. Fransen for their work on the synthesis of $\left[19-\mathrm{CD}_{3}\right]$ retinal. Demethylretinoic acids from Hoffmann-La Roche were generously provided by Dr. L. Stryer. We are grateful to M. Stockburger for communicating his manuscript on bacteriorhodopsin prior to publication. This work was supported by the National Science Foundation (CHE 81-16042) and by the National Institutes of Health (EY-02051). R.M. is an Alfred P. Sloan Research Fellow (1979-1981) and an NIH Research Career Development Awardee (EY-00219).

Registry No. A, 116-31-4; B, 74352-10-6; C, 77871-13-7; D, 77871-14-8; E, 74352-09-3; F, 82178-69-6; 15-monodeuterio-all-trans-retinal, 75238-14-1; 9-demethyl-all-trans-retina1, 24336-19-4; 13-demethyl-all-trans-retinal, 24336-20-7; 19-trideuterio-all-trans-retinal, 77287-25-3.

Supplementary Material Available: The Cartesian coordinates used in the calculations and a complete description of the force field will be found in Tables VIII and IX (5 pages). Ordering information is given on any current masthead page.

[^9]
[^0]: (13) Eyring, G.; Curry, B.; Broek, A.; Lugtenburg, J.; Mathies, R. Biochemistry 1982, 21, 384.
 (14) Rimai, L.; Gill, D.; Parsons, J. L. J. Am. Chem. Soc. 1971, 93, 1353.
 (15) Cookingham, R. Ph.D. Thesis, Cornell University, Ithaca, NY, 1978.

[^1]: (16) (a) Fransen, M. R.; Palings, I.; Lugtenburg, J.; Jansen, P. A. A.; Groenendijk, G. W. T. Recl. Trav. Chim. Pays-Bas 1980, 99, 384. (b) Broek, A. D.; Lugtenburg, J. Ibid. 1980, 99, 363. (c) Broek, A. D.; Lugtenburg, J. Ibid. 1982, 101, 102.

[^2]: (17) Wilson, E. B.; Decius, J. C.; Cross, P. C. "Molecular Vibrations"; McGraw-Hill: New York, 1955; pp 54-65.
 (18) (a) Panchenko, Y. N. Spectrochim. Acta, Part A 1975, 31, 1201. (b) Benedetti, E.; Aglietto, M.; Pucci, S.; Panchenko, Y. N.; Pentin, Y. A.; Nikitin, O. T. J. Mol. Struct. 1978, 49, 293.
 (19) (a) Panchenko, Y. N.; Pulay, P.; Török, F. J. Mol. Struct. 1976, 34, 283. (b) Fukuyama, T.; Kuchitsu, K.; Morino, Y. Bull. Chem. Soc. Jpn. 1968, 41, 3021.
 (20) Popov, E. M.; Kogan, G. A. Opt. Spectrosc. 1964, 17, 362.
 (21) Tarasova, N.' V.; Sverdlov, L. M. Opt. Spectrosc. 1966, 21, 176.
 (22) Levin, I. W.; Pearce, R. A. R.; Harris, W. C. J. Chem. Phys. 1973, 59, 3048.
 (23) Curry, B. Ph.D. Thesis, University of California, Berkeley, CA, in preparation.
 (24) Inagaki, F.; Tasumi, M.; Miyazawa, T. J. Raman Spectrosc. 1975, 3, 335 .

[^3]: (25) Warshel, A.; Karplus, M. J. Am. Chem. Soc. 1974, 96, 5677.
 (26) Hamanaka, T.; Mitsui, T.; Ashida, T.; Kakudo, M. Acta Crystallogr., Sect. B 1972, 28, 214.
 (27) Warshel, A.; Karplus, M. J. Am. Chem. Soc. 1972, 94, 5612.
 (28) Mann, D. E.; Shimanouchi, T.; Meal, J. H.; Fano, L. J. Chem. Phys. 1957, 27, 43.
 (29) Peticolas, W. L.; Strommen, D. P.; Lakshminarayanan, V. J. Chem. Phys. 1980, 73, 4185.

[^4]: (30) Potts, W. J.; Nyquist, R. A. Spectrochim. Acta 1959, 15, 679.

[^5]: (31) Tang, J.; Albrecht, A. C. Raman Spectrosc. 1970, 2, 33.
 (32) Braiman, M.; Mathies, R. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 403.
 (33) The analogous situation has been discussed with reference to stilbene by Edelson, M.; Bree, A. Chem. Phys. Lett. 1976, 41, 562.

[^6]: (34) Sverdlov, L. M.; Kovner, M. A.; Krainov, E. P. "Vibrational Spectra of Polyatomic Molecules"; Wiley: New York, 1974; pp 236-41, 249-69, 303-14.
 (35) Meic, Z.; Güsten, H. Spectrochim. Acta, Part A 1978, 34, 101.

[^7]: (38) Sundius, T. J. Raman Spectrosc. 1973, 1, 471.

[^8]: (39) Rimai, L.; Heyde, M. E.; Gill, D. J. Am. Chem. Soc. 1973, 95, 4493.
 (40) Margulies, L.; Stockburger, M. J. Raman Spectrosc. 1979, 8, 26.

[^9]: (45) Alshuth, Th.; Stockburger, M. Ber. Bunsenges. Phys. Chem. 1981, 85, 484.
 (46) Massig, G.; Stockburger, M.; Gärtner, W.; Oesterhelt, D.; Towner, P. J. Raman Spectrosc. 1982, 12, 287.

